Person:
Fraile Prieto, Luis Mario

Loading...
Profile Picture
First Name
Luis Mario
Last Name
Fraile Prieto
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Estructura de la Materia, Física Térmica y Electrónica
Area
Física Atómica, Molecular y Nuclear
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 108
  • Publication
    Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases
    (E D P Sciences, 2019) Fraile Prieto, Luis Mario; Vedia Fernández, María Victoria; otros, ...
    Three observables of interest for present and future reactors depend on the beta decay properties of the fission products: antineutrinos from reactors, the reactor decay heat and delayed neutron emission. In these proceedings, we present new results from summation calculations of the first two quantities quoted above, performed with evolved independent yields coupled with fission product decay data, from various nuclear data bases or models. New TAGS results from the latest experiment of the TAGS collaboration at the JYFL facility of Jyvaskyla will be displayed as well as their impact on the antineutrino spectra and the decay heat associated to fission pulses of the main actinides.
  • Publication
    Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes
    (Amer Physical Soc, 2016-05-02) Fraile Prieto, Luis Mario
    Background: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from (10,12-18C) and B10-15 isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1 pxn) for relativistic C-10,C-12-18 and B10-15 isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the EPAX code is not able to describe the data satisfactorily. Using ABRABLA07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease ABRABLA07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study.
  • Publication
    Bulk and decay properties of neutron-deficient odd-mass Hg isotopes near A=185
    (Amer Physical Soc, 2022-09-22) Moreno Díaz, Óscar; Sarriguren, P.; Algora, A.; Fraile Prieto, Luis Mario; Orrigo, S. E. A.
    Ground and isomeric states of the neutron-deficient odd-A isotopes 183Hg, 185Hg, and 187Hg are described from a microscopic calculation based on a self-consistent, axially deformed Hartree-Fock mean field with the Skyrme functional and pairing within BCS approximation. For each equilibrium shape and different odd-neutron states, results on mean-square charge radii and magnetic dipole moments are given and analyzed in the context of their sensitivity to the nuclear deformation and to the spin and parity. Spin-isospin correlations within proton-neutron quasiparticle random phase approximation are then introduced in the nuclear states to obtain the distributions of Gamow-Teller strength and the beta+/EC half-lives of these isotopes, whose measurements are planned at ISOLDE-CERN using total absorption gamma-ray spectroscopy techniques.
  • Publication
    Low-spin states in Ge-80 populated in the beta decay of the Ga-80 3(-) isomer
    (Amer Physical Soc, 2021-08-10) Fraile Prieto, Luis Mario; Mach, Henryk Andrzej; Paziy, Vadym; otros, ...
    The structure of Ge-80 has been investigated at the ISOLDE facility at CERN. A previous study reported for the first time a low-lying 0(2)(+) intruder state at 639 keV, based on the coincidence with a previously unobserved 1764-keV gamma ray, and suggested it as evidence for shape coexistence in Ge-80. We used the beta decay from the 3(-) 22.4-keV state in Ga-80 to enhance the population of low-spin states in Ge-80, including any excited 0(+) level, and gamma gamma coincidences to investigate it. We observed a 1764-keV gamma ray in coincidence with strong transitions in Ge-80, thus not feeding the proposed 639-keV 0(2)(+). No connecting transitions from previously known levels to the 639-keV and 2403-keV 2(3)(+) states could be established either. Shell-model calculations for Ge isotopes and N = 48 isotones were performed. They succeed to explain most of the experimental levels, but fail to reproduce the presence of a 0(2)(+) state below approximate to 1200 keV in Ge-80. Our experimental findings and shell-model calculations are difficult to reconcile with a very low-lying 0(2)(+) state in Ge-80.
  • Publication
    Alternative approach to populate and study the ^229 Th nuclear clock isomer
    (American Physical Society, 2019-08-12) Verlinde, M; Kraemer, S.; Moens, J.; Fraile Prieto, Luis Mario; Wilkins, S. G.; otros,...
    A new approach to observe the radiative decay of the ^229 Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the development of a nuclear clock or a nuclear laser and, the search for time variations of fundamental constants like the fine structure constant. The isomer's gamma decay towards the ground state will be studied with a high-resolution vacuum ultraviolet (VUV) spectrometer after its production by the beta decay of ^Ac 229. The novel production method presents a number of advantages asserting its competitive nature with respect to the commonly used ^U 233 alpha-decay recoil source. In this paper, a feasibility analysis of this new concept, and an experimental investigation of its key ingredients, using a pure ^Ac 229 ion beam produced at the ISOLDE radioactive beam facility, is reported.
  • Publication
    Decay studies in the A similar to 225 Po-Fr region from the DESPEC campaign at GSI in 2021
    (Soc. Italiana Fisica, 2022-09) Benito García, Jaime; Fraile Prieto, Luis Mario; Llanos Expósito, Marcos; Murias, J. R.; otros, ...
    The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region.
  • Publication
    Total absorption gamma-ray spectroscopy study of the beta-decay of Hg-186
    (Elsevier Science BV, 2021-08-10) Algora, A.; Ganioglu, E.; Sarriguren, P.; Guadilla, V.; Fraile Prieto, Luis Mario; Nácher, E.; Rubio, B.; Tain, J. L.; Agramunt, J.; Gelletly, W.; Briz, J. A.; Cakirli, R.B.; Fallot, M.; Jordan, D.; Halász, Z.; Kuti, I.; Montaner, A.; Onillón, A.; Origo, S.E.A.; Pérez Cerdán, A.; Rice, S.; Vedia Fernández, María Victoria; Valencia, E.
    The Gamow-Teller strength distribution of the decay of Hg-186 into Au-186 has been determined for the first time using the total absorption gamma spectroscopy technique and has been compared with theoretical QRPA calculations using the SLy4 Skyrme force. The measured Gamow-Teller strength distribution and the half-life are described by mixing oblate and prolate configurations independently in the parent and daughter nuclei. In this theoretical framework the best description of the experimental beta strength is obtained with dominantly prolate components for both parent Hg-186 and daughter Au-186. The approach also allowed us to determine an upper limit of the oblate component in the parent state. The complexity of the analysis required the development of a new approach in the analysis of the X-ray gated total absorption spectrum. (C) 2021 The Authors. Published by Elsevier B.V.
  • Publication
    Electromagnetic properties of low-lying states in neutron-deficient Hg isotopes: Coulomb excitation of Hg-182, Hg-184, Hg-186 and Hg-188
    (Springer, 2019-08) Fraile Prieto, Luis Mario; otros, ...
    The neutron-deficient mercury isotopes serve as a classical example of shape coexistence, whereby at low energy near-degenerate nuclear states characterized by different shapes appear. The electromagnetic structure of even-mass 182-188 Hg isotopes was studied using safe-energy Coulomb excitation of neutron-deficient mercury beams delivered by the REX-ISOLDE facility at CERN. The population of 0 + 1,2, 2(1,2)(+) and 4(1)(+) states was observed in all nuclei under study. Reduced E2 matrix elements coupling populated yrast and non-yrast states were extracted, including their relative signs. These are a sensitive probe of shape coexistence and may be used to validate nuclear models. The experimental results are discussed in terms of mixing of two different configurations and are compared with three different model calculations: the Beyond Mean Field model, the Interacting Boson Model with configuration mixing and the General Bohr Hamiltonian. Partial agreement with experiment was observed, hinting to missing ingredients in the theoretical descriptions.
  • Publication
    Decay studies of the long-lived states in Tl-186
    (Amer Physical Soc, 2020-08-18) Fraile Prieto, Luis Mario; Vedia Fernández, María Victoria; otros, ...
    Decay spectroscopy of the long-lived states in Tl-186 has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The a decay from the low-spin (2(-)) state in Tl-186 was observed for the first time and a half-life of 3.4(-0.)(4)(+0.5) s was determined. Based on the alpha-decay energy, the relative positions of the long-lived states were fixed, with the (2(-)) state as the ground state, the 7((+)) state at 77(56) keV, and the 10((-)) state at 451(56) keV. The level scheme of the internal decay of the Tl-186(10((-))) state [T-1/2 = 3.40(9) s], which was known to decay solely through emission of 374-keV gamma-ray transition, was extended and a lower limit for the beta-decay branching b(beta) > 5.9(3)% was determined. The extracted retardation factors for the gamma decay of the 10((-) )state were compared to the available data in neighboring odd-odd thallium isotopes indicating the importance of the pi d(3/2) shell in the isomeric decay and significant structure differences between Tl-184 and Tl-186.
  • Publication
    New insights into triaxiality and shape coexistence from odd-mass Rh-109
    (American Physical Society, 2018-12-20) Fraile Prieto, Luis Mario; otros, ...
    Rapid shape evolutions near A = 100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z <= 40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited states in the neutron-rich nucleus Rh-109. The measurements confirm the persistence at higher Z of similarly large deformations observed near Z = 40. Moreover, we show that new self-consistent mean-field calculations, with proper treatment of the odd nucleon, are able to reproduce the coexisting triaxial and highly deformed configurations revealing, for the first time, the important contribution of the unpaired nucleon to these different shapes based on the blocking of specific single-particle orbitals.