Person:
Cajas Suárez, Yulia Nathaly

Loading...
Profile Picture
First Name
Yulia Nathaly
Last Name
Cajas Suárez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Functional analysis of the effect of nobiletin on preimplantation bovine
    (2022) Cajas Suárez, Yulia Nathaly; Rizos, Dimitrios; Bautista, José M.
    In vitro production of embryos (IVP) is a reproductive biotechnology widely used to increase the number of offspring from superior phenotypes, to treat infertility problems and also to address fundamental questions about metabolic pathways that modulate early embryonic development. However, IVP is a multifactorial process depending on extrinsic and intrinsic factors, at both cellular and molecular levels, to increase its efficiency. Still today the IVP procedure has limitations, considering that not all oocytes have the ability to reach the blastocyst. Although a successful in vitro maturation (IVM) involves a nuclear, cytoplasmic and molecular maturation, necessary for fertilization and further embryo development, the blastocyst rate do not overcome 30-40% in bovine. Thus, alteration in the dynamics of early embryo development, which coincides with the switch from maternal control to embryonic genome activation (EGA) on Day 4 post fertilization, may be partially responsible for reduced embryo yield. Furthermore, it has been suggested that apart from the origin of the oocyte, the increase in reactive oxygen species (ROS) and the culture environment affecting EGA, there is also a complex network of signaling pathways responsible for cell division and differentiation and other events necessary for embryonic development, such as MAPK and PI3K/AKT...
  • Item
    Improvement of oocyte competence and in vitro oocyte maturation with EGF and IGF-I in Guinea pig model
    (Theriogenology, 2023) Cañón Beltrán, Karina Esperanza; García García, Rosa María; Cajas Suárez, Yulia Nathaly; Fierro, Natacha; Lorenzo González, Pedro Luis; Arias Álvarez, María
    In vitro maturation (IVM) system is an alternative method to superovulation protocols to obtain mature oocytes. Epidermal Growth Factor (EGF) and Insulin-like Growth Factor I (IGF-I) have been widely used in IVM medium in different species. Although the guinea pig is a valuable animal model for reproductive studies, IVM is rarely used. We aimed to establish a suitable in vitro production system using EGF and/or IGF-I during IVM to improve oocyte competence. Firstly, immunolocalization of EGF and IGF-I receptors in the ovary was assessed. An IVM dose-response experiment was performed with cumulus-oocyte complexes (COCs) supplemented with: 1) EGF [0, 10, 50, 100 ng/mL or 10% fetal calf serum (FCS)]; 2) IGF-I [0, 50, 100, 200 ng/mL or 10% FCS]; or 3) the concentrations of EGF and IGF-I which showed the best IVM index in the previous experiments, with or without Fetal Calf Serum (FCS). Cortical granule and mitochondria distribution patterns were determined in in vivo and in vitro-matured oocytes for the first time in this species. Apoptotic rate after IVM and oocyte competence by in vitro embryo development were evaluated. Immunohistochemistry results showed positive immunostaining of EGF and IGF receptors in corpus luteum, oocytes, granulosa and theca cells in follicles in all stages of development. Supplementation of IVM medium with 50 ng/mL EGF or 100 ng/mL IGF-I or their combination with FCS successfully led to oocyte nuclear and cytoplasmic maturation and reduced the apoptotic rate. Both growth factors improved oocyte competence during IVM in this species since early embryos were in vitro developed, showing better results when FCS was used in the IVM medium.
  • Item
    Acquisition of fertilization competence in guinea pig spermatozoa under different capacitation protocols
    (Theriogenology, 2023) Cañón Beltrán, Karina Esperanza; Cajas Suárez, Yulia Nathaly; González Martínez, María Encina; Fernández-González, Raul; Fierro, Natacha; Lorenzo González, Pedro Luis; Arias Álvarez, María; García García, Rosa María; Gutiérrez Adán, Alfonso; Rizos, Dimitri
    Guinea pig in vitro fertilization (IVF) are poorly developed due to the limited accessibility to oocytes and the lack of an efficient method of sperm capacitation. Thus, we aimed to evaluate different capacitation protocols that we validated through sperm analysis and using heterologous (He) IVF with zona-intact bovine oocytes. Spermatozoa of guinea pigs were collected and processed separately by 4 different protocols: A) Spermatozoa were obtained by flushing the lumen of one cauda epididymis and incubated in a minimal culture medium (MCM); B) One epididymis was placed in a prewarmed of M2 medium and gently minced with fine scissors. Spermatozoa were incubated in a modified human tubal fluid medium (HTF). In both protocols, the spermatozoa were capacitated at 37 °C under an atmosphere of 5% CO2 for 2 h. In the protocols C and D, the spermatozoa were collected by flushing the lumen of the cauda epididymis and selected by commercial density gradient Bovipure® (Nidacon Laboratories AB, Göthenborg, Sweden), according to the manufacturer's instructions. Then for Protocol C) spermatozoa were incubated in MCM medium supplemented with 10 mg/mL heparin (MCM-Hep); while for Protocol D) spermatozoa were incubated in FERT medium supplemented 10 mg/mL heparin (FERT-Hep). Incubation of C and D protocols were performed at 38.5 °C under an atmosphere of 5% CO2 for 2 h. Capacitation protocols C and D showed a higher percentage of viability, total and hyperactive-like motility, and acrosome reaction compared to protocols A and B. For this reason, protocols C and D were used for further He-IVF analysis. Guinea pig sperm and matured zona-intact bovine oocytes were co-incubated at 5% CO2 and 38.5 °C. Sperm-oocyte interaction was assessed at 2.5 h post-insemination (hpi) and pronuclear formation (PrF) were evaluated at 18, 20, 22, 24 and 26 hpi, while the cleavage rate was evaluated at 48 hpi. In protocol D, PrF was significantly higher than in protocol C (P ≤ 0.05) at every time point evaluated. Also, the cleavage rate at 48 hpi was higher (P ≤ 0.05) in He-IVF protocol D (69.8 ± 1.7%) compared to He-IVF protocol C (49.1 ± 1.1%). In conclusion, we determined the most adequate sperm capacitation conditions for guinea pig that allow zona-intact bovine oocyte penetration and lead to hybrid embryo formation, suggesting that these conditions could be optimal to develop IVF in guinea pigs.
  • Item
    Characterization and identification of extracellular vesicles-coupled miRNA profiles in seminal plasma of fertile and subfertile rabbit bucks
    (Theriogenology, 2023) Sakr, Osama G.; Gad, Ahmed; Cañón Beltrán, Karina Esperanza; Cajas Suárez, Yulia Nathaly; Prochazka, Radek; Rizos, Dimitri; Rebollar, Pilar G.
    Seminal plasma (SP) provides essential nutrients, transport, and protection to the spermatozoa during their journey through the male and female reproductive tracts. Extracellular vesicles (EVs) are one of the main components of the SP with several biomolecular cargoes, including miRNAs, that can influence spermatozoa functions and interact with the cells of the female reproductive tract. This study aimed to isolate, characterize, and identify the miRNA expression profiles in the SP-EVs isolated from fertile (F) and subfertile (S) rabbit bucks that could serve as fertility biomarkers. In this study, the methods to isolate and identify EVs including exosomes, from SP of 3 F and S bucks have been developed. Ultracentrifugation and size exclusion chromatography analysis were using to isolate EVs from SP of F and S males that were qualitative and quantitively characterised using transmission electron microscopy, nanoparticle tracking analysis and western blotting. In addition, total RNA, including miRNA, was isolated, sequenced and identified from SP-EVs samples. Different SP-EVs concentrations (8.53 × 1011 ± 1.04 × 1011 and 1.84 × 1012 ± 1.75 × 1011 particles/mL of SP; P = 0.008), with a similar average size (143.9 ± 11.9 and 115.5 ± 2.4 nm; P = 0.7422) in F and S males, respectively was observed. Particle size was not significantly correlated with any kinetic parameter. The concentration of SP-EVs was positively correlated with the percentage of abnormal forms (r = 0.94; P < 0.05) and with the percentage of immotile spermatozoa (r = 0.88; P < 0.05). Small-RNA-seq analysis identified a total of 267 and 244 expressed miRNAs in the F and S groups, respectively. Two miRNAs (let-7b-5p and let-7a-5p) were the top most abundant miRNAs in both groups. Differential expression analysis revealed that 9 miRNAs including miR-190b-5p, miR-193b-5p, let-7b-3p, and miR-378–3p, and another 9 miRNAs including miR-7a-5p, miR-33a-5p, miR-449a-5p, and miR-146a-5p were significantly up- and downregulated in the F compared to the S group, respectively. The SP from F and S rabbit males contains EVs with different miRNA cargo correlated with spermatogenesis, homeostasis, and infertility, which could be used as biomarkers for male fertility and potential therapies for assisted reproductive technologies.
  • Item
    Nobiletin as a novel agent to enhance porcine in vitro embryo development and quality
    (Theriogenology, 2024) Cajas Suárez, Yulia Nathaly; Cañón Beltrán, Karina Esperanza; Mazzarella, Rosane; Núñez Puente, Carolina; González Martínez, María Encina; Rodríguez Martínez, Heriberto; Rizos, Dimitri; Martínez Serrano, Cristina A.
    In vitro embryo production (IVP) is of great importance to the porcine industry, as well as for basic research and biomedical applications. Despite the large efforts made in laboratories worldwide to address suboptimal culture conditions, porcine IVP remains inefficient. Nobiletin (Nob, 5,6,7,8,3′,4′ hexamethoxyflavone) supplementation to in vitro culture (IVC) medium, enhances in vitro embryo development in various species. However, its impact on the quality and developmental capacity of in vitro-produced pig embryos is yet to be established. This study evaluated the effects of different concentrations (2.5 and 5 μM) of Nob during the early culture of in vitro-produced pig embryos on embryo developmental competence, mitochondrial activity, lipid content, intracellular Reactive Oxygen Species (ROS) and Glutathione (GSH) content, Total Cell Number (TCN) per blastocyst, and expression of genes related to embryo development, quality and oxidative stress. Embryos cultured in medium without Nob supplementation and in medium supplemented with 0.01 % dimethyl sulfoxide (DMSO-vehicle for Nob) constituted the Control and DMSO groups, respectively. Embryo development rates were evaluated on Days 2, 6 and 7 of IVC. Additionally, a representative group of embryos was selected to assess mitochondrial activity, lipid, ROS and GSH content (on Days 2 and 6 of IVC), TCN assessment and gene expression analyses (on Day 6 of IVC). No significant differences were observed in any of the parameters evaluated on Day 2 of IVC. In contrast, embryos cultured under the presence of Nob 2.5 showed higher developmental rates on Days 6 and 7 of IVC. In addition, Day 6 embryos showed increased mitochondrial activity, with decreased levels of ROS and GSH in the Nob 2.5 group compared to the other groups. Both Nob 2.5 and Nob 5 embryos showed higher TCN compared to the Control and DMSO groups. Furthermore, Nob 2.5 and Nob 5 upregulated the expression of Superoxide dismutase type 1 (SOD1) and Glucose-6-phosphate dehydrogenase (G6PDH) genes, which could help to counteract oxidative stress during IVC. In conclusion, the addition of Nob during the first 48 h of IVC increased porcine embryo development rates and enhanced their quality, including the upregulation of relevant genes that potentially improved the overall efficiency of the IVP system.