Person:
Pillado Ríos, Borja

Loading...
Profile Picture
First Name
Borja
Last Name
Pillado Ríos
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Ingeniería Química y de Materiales
Area
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 9 of 9
  • Item
    Project number: 72
    Implementación de una nueva práctica de Laboratorio: "Fusión y electroafino del cobre con una orientación a la economía circular"
    (2023) Muñoz Sánchez, Jesús Ángel; Castro Ruiz, Laura; González González, Felisa; Arrabal Durán, Raúl; Matykina, Endzhe; Mohedano Sánchez, Marta; Pillado Ríos, Borja; Moreno Turiégano, Lara; López Martínez, Esther; Mateo Gómez, Gerardo; Abarca García, Isabel
  • Item
    Functionalization of Plasma Electrolytic Oxidation/Sol–Gel Coatings on AZ31 with Organic Corrosion Inhibitors
    (Coatings, 2024) Pillado Ríos, Borja; Matykina, Endzhe; Olivier, Marie-Georges; Arrabal Durán, Raúl; Mohedano Sánchez, Marta; Barucca, Gianni
    In this investigation, the sol–gel method is employed along with a corrosion inhibitor to seal a plasma electrolytic oxidation (PEO) coating, aiming to improve the long-term corrosion resistance of the AZ31 Mg alloy. Following an initial screening of corrosion inhibitors, 8-hydroxyquinoline (8HQ) is incorporated into the hybrid PEO/sol–gel system using two methods: (i) post-treatment of the PEO layer through immersion in an inhibitor-containing solution; (ii) loading the inhibitor into the sol–gel precursor. The characterization includes scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), and water drop contact angle measurements. The rheological properties of the inhibitor-loaded sol–gel precursors are assessed by measuring flow curves. The corrosion processes are evaluated in a saline solution through electrochemical impedance spectroscopy (EIS) and immersion tests with unscratched and scratched specimens, respectively. The results demonstrate the successful incorporation of the inhibitor for both loading strategies. Regardless of the loading approach, systems containing 8HQ exhibit the most favourable long-term corrosion resistance.
  • Item
    Project number: 250
    Catálogo de actividades prácticas sobre corrosión y protección de materiales metálicos para el aprendizaje autónomo
    () Arrabal Durán, Raúl; Matykina, Endzhe; Mohedano Sánchez, Marta; Pardo Gutiérrez Del Cid, Ángel; Gómez De Castro, Consuelo; Muñoz Sánchez, Jesús Ángel; Mora Sánchez, Hugo; Samaniego Miracle, Alejandro; Mateo Gómez, Gerardo; Pillado Ríos, Borja; Moreno Turiégano, Lara; Olmo Martínez, Rubén del; López Martínez, Esther; Carnero García, Jonás; Ramos Capón, Carolina
    El fin último del presente proyecto de innovación es la creación de recursos didácticos que permitan a los estudiantes desarrollar en casa y con elementos asequibles una serie de actividades prácticas dirigidas al aprendizaje autónomo sobre fundamentos de la corrosión y protección de materiales metálicos.
  • Item
    Functionalization of plasma electrolytic oxidation/sol-gel coatings on AZ31 with organic corrosion inhibitors
    (Coatings, 2024) Pillado Ríos, Borja; Matykina, Endzhe; Olivier, Marie-Georges; Mohedano Sánchez, Marta; Arrabal Durán, Raúl
    In this investigation, the sol-gel method is employed along with a corrosion inhibitor to seal a plasma electrolytic oxidation (PEO) coating, aiming to improve the long-term corrosion resistance of the AZ31 Mg alloy. Following an initial screening of corrosion inhibitors, 8-hydroxyquinoline (8HQ) is incorporated into the hybrid PEO/sol-gel system using two methods: (i) post-treatment of the PEO layer through immersion in an inhibitor-containing solution; (ii) loading the inhibitor into the sol-gel precursor. The characterization includes scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), and water drop contact angle measurements. The rheological properties of the inhibitor-loaded sol-gel precursors are assessed by measuring flow curves. The corrosion processes are evaluated in a saline solution through electrochemical impedance spectroscopy (EIS) and immersion tests with unscratched and scratched specimens, respectively. The results demonstrate the successful incorporation of the inhibitor for both loading strategies. Regardless of the loading approach, systems containing 8HQ exhibit the most favourable long-term corrosion resistance.
  • Item
    Ca-based sealing of plasma electrolytic oxidation coatings on AZ91 Mg alloy
    (Surface and Coatings Technology, 2021) Lu, Xiaopeng; Ma, Jirui; Mohedano Sánchez, Marta; Pillado Ríos, Borja; Arrabal Durán, Raúl; Qian, Kun; Li, Yan; Zhang, Tao; Wang, Fuhui
    Plasma electrolytic oxidation (PEO) coatings on AZ91 Mg alloy were sealed in calcium nitrate solutions at different pH values (3, 4 and 5). Sodium dodecyl sulfate (SDS) was added to study the effect of SDS on the corrosion resistance of the sealed coatings. The microstructure, chemical composition and corrosion resistance of the coatings were investigated by means of SEM, XPS, XRD and electrochemical corrosion tests. The corrosion performance of the coatings was improved due to precipitation of Ca-containing precipitate. Low pH and SDS addition enhanced hydroxyapatite precipitation and produced hydrophobic coatings with worse paint adhesion but better corrosion resistance.
  • Item
    Calcium Doped Flash-PEO Coatings for Corrosion Protection of Mg Alloy
    (Metals, 2020) Wierzbicka, Ewa; Pillado Ríos, Borja; Mohedano Sánchez, Marta; Arrabal Durán, Raúl; Matykina, Endzhe
    This study demonstrates a significant improvement of the corrosion resistance of an AZ31B magnesium alloy achieved by the application of 1 um-thin coatings generated by an environmentally friendly flash plasma electrolytic oxidation (FPEO) process in Ca-containing electrolytes. Two compounds with different solubility, calcium oxide (CaO) or calcium glycerophosphate (CaGlyP), were used as sources of Ca in the electrolyte. Very short durations (20–45 s) of the FPEO process were employed with the aim of limiting the energy consumption. The corrosion performance of the developed coatings was compared with that of a commercial conversion coating (CC) of similar thickness. The viability of the coatings in a full system protection approach, consisting of FPEO combined with an inhibitor-free epoxy primer, was verified in neutral salt spray and paint adhesion tests. The superior corrosion performance of the FPEO_CaGlyP coating, both as a stand-alone coating and as a full system, was attributed to the formation of a greater complexity of Ca2+ bonds with SiO2 and PO4 3- species within the MgO ceramic network during the in situ incorporation of Ca into the coating from a double chelated electrolyte and the resultant difficulties with the hydrolysis of such a network. The deterioration of the FPEO_CaGlyP coating during immersion was found over ten times slower compared with Ca-free flash-PEO coating.
  • Item
    Layered Double Hydroxide Coatings Loaded with Corrosion Inhibitors for Corrosion Protection of AZ31 †
    (materials proceedings, 2021) Pillado Ríos, Borja; Mohedano Sánchez, Marta; Olmo Martínez, Rubén del; Mingo, Beatriz; Matykina, Endzhe; Arrabal Durán, Raúl
    Layered double hydroxide (LDHs) coatings were developed for the corrosion protection of AZ31 Mg alloy. AZ31 is widely used in the transport industry due to its low mass density and good mechanical properties. LDH coatings were fabricated under co-precipitation conditions and applied under hydrothermal conditions. Two different systems Zn-Al LDH and Li-Al LDH were studied. Specimens were post-treated via immersion for 2 h at 45 °C in inhibitor aqueous baths. Na2WO4·H2O and LiNO3 inorganic inhibitors were used, respectively, to produce inhibitor-loaded systems: Zn-Al LDH(W) and Li-Al LDH(Li). The characterization of the coatings was carried out by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The corrosion process was studied by electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The surface was also evaluated via the determination of water drop contact angle and the performance of a paint adhesion test using an epoxy primer. The characterization of the coating revealed two-layered coatings with a denser inner layer and a flaky outer layer. Both coatings improved the corrosion resistance of the AZ31 alloy. Loading with inhibitor further increased the corrosion resistance by one order of magnitude (bare substrate, Z10mHz~102 Ω cm2; LDH, Z10mHz~103–4 Ω cm2; LDH-inhibitor, Z10mHz~105 Ω cm2).
  • Item
    Data: Energy consumption, wear and corrosion of PEO coatings on preanodized Al alloy: the influence of current and frequency. Journal of Materials Research and Technology, 21, pp. 2061-2075 (2022).
    () Mohedano Sánchez, Marta; López Martínez, Esther; Mingo, Beatriz; Moon, Sungmo; Matykina, Endzhe; Arrabal Durán, Raúl; Pillado Ríos, Borja
  • Item
    PEO coating with Ce-sealing for corrosion protection of LPSO Mg-YZn alloy
    (Surface and Coatings Technology, 2020) Mohedano Sánchez, Marta; Perez, P.; Matykina, Endzhe; Pillado Ríos, Borja; Garcés, G.; Arrabal Durán, Raúl
    Plasma Electrolytic Oxidation coatings (PEO), without and with Ce-based sealings, were developed on a Mg–Y–Zn alloy containing long period stacking order (LPSO) phases in order to improve its corrosion behaviour. Specimens were investigated in terms of morphology, composition and corrosion behaviour (polarization and hydrogen evolution measurements). PEO improved the corrosion resistance compared to the bulk material. Sealing for 5 min plugged the coating pores and cracks with Ce-rich compounds, resulting in improved long-term corrosion behaviour. Sealing for 1 h resulted in excessive dissolution of the coating and deterioration of the inner barrier layer.