Person: Moreta Santos, María Jesús
Loading...
First Name
María Jesús
Last Name
Moreta Santos
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Económicas y Empresariales
Department
Análisis Económico y economía cuantitativa
Area
Fundamentos del Análisis Económico
Identifiers
5 results
Search Results
Now showing 1 - 5 of 5
Publication Propuestas de mejora en la metodología y la gestión del curso semipresencial de Matemáticas Básicas para Economía “Matemáticas G0” (R79). Inclusión en la oferta de cursos MOOC y tutorías entre iguales(2020-06-23) Vázquez Furelos, Mercedes; Herrera de la Cruz, Jorge; Arenas Amorós, Jorge; Dueñas Ballesteros, Juan Manuel; García Pineda, María Pilar; Gonzalez Vega, Jorge; López Zorzano, Rafael Alberto; Lozano Mena, Francisca; Lugo Arocha, Haydee Corina; Mera Rivas, María Eugenia; Rodrigo Fernández, Antonio; Serrejón Beltran, Francisco Javier; Vila Rodríguez, Andrés; Moreta Santos, María JesúsEn este informe se detalla el funcionamiento del curso semipresencial "Matemáticas G0" que se imparte en todas las titulaciones de la facultad de Ciencias Económicas y Empresariales. Se explora la eficacia de los métodos docentes audiovisuales y de autoaprendizaje en la enseñanza de las matemáticas y se analiza la eficiencia de las tutorías entre iguales, es decir, alumnos de cursos superiores que trabajan en el aula con los alumnos de nuevo ingreso bajo la supervisión de un profesor-tutor.Publication Software matemático para un cambio metodológico en la docencia de las matemáticas para economistas.(2015-02-19) Álvarez González, Francisco; Bujosa Brun, Marcos; Cerdá Tena, Emilio; de Castro, Luis Miguel; Jerez Méndez, Miguel; LLorente Comí, Marta; López Zorzano, Rafael; Lugo Arocha, Haydée; Maroto Fernández, José María; Mera Rivas, María Eugenia; Morán cabré, Manuel; Moreta Santos, María Jesús; Rey Simo, José Manuel; Rodrigo Fernández, Antonio; Ruiz, Jesús; Serrano, Gregorio; Vázquez Furelos, MercedesEn este proyecto se aborda cómo el software matemático puede mejorar la eficacia docente en las asignaturas de matemáticas para economistas del Grado en Economía de la UCM. Se ha elaborado un material docente para la asignatura de Matemáticas II del Grado en Economía (Álgebra Lineal) que consiste en material de prácticas con el software matemático Maple. Además se han analizado otros softwares matemáticos sin licencia. La financiación del proyecto se ha dedicado a organizar un curso de Sage que está alojado en el seminario de trabajo del campus virtual https://cv4.ucm.es/moodle/course/view.php?id=54001.Publication Avoiding the order reduction when solving second-order in time PDEs with Fractional Step Runge-Kutta-Nyström methods(Elsevier, 2016-04) Moreta Santos, María Jesús; Bujanda, Blanca; Jorge, Juan CarlosWe study some of the main features of Fractional Step Runge-Kutta-Nystr¨om methods when they are used to integrate Initial-Boundary Value Problems of second order in time, in combination with a suitable spatial discretization. We focus our attention in the order reduction phenomenon, which appears if classical boundary conditions are taken at the internal stages. This drawback is specially hard when time dependent boundary conditions are considered. In this paper we present an efficient technique, very simple and computationally cheap, which allows us to avoid the order reduction; such technique consists of modifying the boundary conditions for the internal stages of the method.Publication Rosenbrock type methods for solving non-linear second-order in time problems(2017-07-13) Moreta Santos, María JesúsIn this work we present a new class of methods which have been developed in order to numerically solve non-linear second-order in time problems. These methods are of Rosenbrock type, and can be seen as a generalization of these methods when they are applied to second-order in time problems which have been previously transformed into first-order in time problems. As they follow the ideas of Runge-Kutta-Nystr¨om methods when solving second-order in time problems, we will call them Rosenbrock-Nystr¨om methods. These new methods present less computational cost than implicit RungeKutta-Nystr¨om ones, as the non-linear systems which arises when RungeKutta-Nystr¨om methods are used are replaced with sequences of linear ones. In this article we show the development of Rosenbrock-Nystr¨om methods, as well as the conditions that must be satisfied to get the desired classical order (up to order four) and the main ideas in order to have stability. Besides, we will show some numerical experiments that prove the good behaviour of these new methods.Publication Exponential quadrature rules without order reduction for integrating linear initial boundary value problems(Society for Industrial and Applied Mathematics, 2018) Cano Urdiales, Begoña; Moreta Santos, María JesúsIn this paper a technique is suggested to integrate linear initial boundary value problems with exponential quadrature rules in such a way that the order in time is as high as possible. A thorough error analysis is given both for the classical approach of integrating the problem first in space and then in time and for doing it in the reverse order in a suitable manner. Time-dependent boundary conditions are considered with both approaches and full discretization formulas are given to implement the methods once the quadrature nodes have been chosen for the time integration and a particular (although very general) scheme is selected for the space discretization. Numerical experiments are shown which corroborate that, for example with the suggested technique, order 2s is obtained when choosing the s nodes of the Gaussian quadrature rule.