Person: Álvarez Solas, Jorge
Loading...
First Name
Jorge
Last Name
Álvarez Solas
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
15 results
Search Results
Now showing 1 - 10 of 15
Publication Brief communication "Can recent ice discharges following the Larsen-B ice-shelf collapse be used to infer the driving mechanisms of millennial-scale variations of the Laurentide ice sheet?"(Copernicus Gesellschaft MBH, 2012-06-27) Álvarez Solas, Jorge; Robinson, Alexander James; Ritz, C.The effects of an ice-shelf collapse on inland glacier dynamics have recently been widely studied, especially since the breakup of the Antarctic Peninsula's Larsen-B ice shelf in 2002. Several studies have documented acceleration of the ice streams that were flowing into the former ice shelf. The mechanism responsible for such a speed-up lies with the removal of the ice-shelf backforce. Independently, it is also well documented that during the last glacial period, the Northern Hemisphere ice sheets experienced large discharges into the ocean, likely reflecting ice flow acceleration episodes on the millennial time scale. The classic interpretation of the latter is based on the existence of an internal thermo-mechanical feedback with the potential to generate oscillatory behavior in the ice sheets. Here we would like to widen the debate by considering that Larsen-B-like glacial analog episodes could have contributed significantly to the registered millennial-scale variablity.Publication Role of CO2 and Southern Ocean winds in glacial abrupt climate change(Copernicus Gesellschaft MBH, 2012-06-01) Banderas Carreño, Rubén; Álvarez Solas, Jorge; Montoya, M.The study of Greenland ice cores revealed two decades ago the abrupt character of glacial millennial-scale climate variability. Several triggering mechanisms have been proposed and confronted against growing proxy-data evidence. Although the implication of North Atlantic deep water (NADW) formation reorganisations in glacial abrupt climate change seems robust nowadays, the final cause of these reorganisations remains unclear. Here, the role of CO2 and Southern Ocean winds is investigated using a coupled model of intermediate complexity in an experimental setup designed such that the climate system resides close to a threshold found in previous studies. An initial abrupt surface air temperature (SAT) increase over the North Atlantic by 4 K in less than a decade, followed by a more gradual warming greater than 10 K on centennial timescales, is simulated in response to increasing atmospheric CO2 levels and/or enhancing southern westerlies. The simulated peak warming shows a similar pattern and amplitude over Greenland as registered in ice core records of Dansgaard-Oeschger (D/O) events. This is accompanied by a strong Atlantic meridional overturning circulation (AMOC) intensification. The AMOC strengthening is found to be caused by a northward shift of NADW formation sites into the Nordic Seas as a result of a northward retreat of the sea-ice front in response to higher temperatures. This leads to enhanced heat loss to the atmosphere as well as reduced freshwater fluxes via reduced sea-ice import into the region. In this way, a new mechanism that is consistent with proxy data is identified by which abrupt climate change can be promoted.Publication Impact of millennial-scale oceanic variability on the Greenland ice-sheet evolution throughout the last glacial period(Copernicus Gesellschaft MBH, 2019-03-28) Tabone, Ilaria; Robinson, Alexander James; Álvarez Solas, Jorge; Montoya Redondo, María LuisaTemperature reconstructions from Greenland icesheet (GrIS) ice cores indicate the occurrence of more than 20 abrupt warmings during the last glacial period (LGP) known as Dansgaard-Oeschger (D-O) events. Although their ultimate cause is still debated, evidence from both proxy data and modelling studies robustly links these to reorganisations of the Atlantic Meridional Overturning Circulation (AMOC). During the LGP, the GrIS expanded as far as the continental shelf break and was thus more directly exposed to oceanic changes than in the present. Therefore oceanic temperature fluctuations on millennial timescales could have had a non-negligible impact on the GrIS. Here we assess the effect of millennial-scale oceanic variability on the GrIS evolution from the last interglacial to the present day. To do so, we use a three-dimensional hybrid ice-sheet–shelf model forced by subsurface oceanic temperature fluctuations, assumed to increase during D-O stadials and decrease during D-O interstadials. Since in our model the atmospheric forcing follows orbital variations only, the increase in total melting at millennial timescales is a direct result of an increase in basal melting. We show that the GrIS evolution during the LGP could have been strongly influenced by oceanic changes on millennial timescales, leading to oceanically induced icevolume contributions above 1 m sea level equivalent (SLE). Also, our results suggest that the increased flux of GrIS icebergs as inferred from North Atlantic proxy records could have been triggered, or intensified, by peaks in melting at the base of the ice shelves resulting from increasing subsurface oceanic temperatures during D-O stadials. Several regions across the GrIS could thus have been responsible for ice mass discharge during D-O events, opening the possibility of a non-negligible role of the GrIS in oceanic reorganisations throughout the LGP.Publication MIS-11 duration key to disappearance of the Greenland ice sheet(Nature Publishing Group, 2017-07-06) Robinson, Alexander James; Álvarez Solas, Jorge; Calov, Reinhard; Ganopolski, Andrey; Montoya Redondo, María LuisaPalaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain estimates of regional temperature anomalies and Greenland's contribution to the MIS-11 sea-level highstand. We find that Greenland contributed 6.1m (3.9-7.0 m, 95% credible interval) to sea level, similar to 7 kyr after the peak in regional summer temperature anomalies of 2.8 degrees C (2.1-3.4 degrees C). The moderate warming produced a mean rate of mass loss in sea-level equivalent of only around 0.4m per kyr, which means the long duration of MIS-11 interglacial conditions around Greenland was a necessary condition for the ice sheet to disappear almost completely.Publication Millennial-scale oscillations in the Southern Ocean in response to atmospheric CO2 increase(Elsevier Science BV, 2011-04) Álvarez Solas, Jorge; Charbit, Sylvie; Ramstein, Gilles; Paillard, Didier; Dumas, Christophe; Ritz, Catherine; Roche, Didier M.A coupled climate-ice-sheet model is used to investigate the response of climate at the millennial time scale under several global warming long-term scenarios, stabilized at different levels ranging from 2 to 7 times the pre-industrial CO2 level. The climate response is mainly analyzed in terms of changes in temperature, oceanic circulation, and ice-sheet behaviour. For the 4 x CO2 scenario, the climate response appears to be highly non-linear: abrupt transitions occur in the Southern Ocean deep water formation strength with a period of about 1200 yr. These millennial oscillations do not occur for both lower and larger CO2 levels. We show that these transitions are associated with internal oscillations of the Southern Ocean, triggered by the Antarctic freshwater budget. We first analyse the oscillatory mechanism. Secondly, through a series of 420 sensitivity experiments we also explore the range of temperature and freshwater flux for which such oscillations can be triggered.Publication Consequences of rapid ice sheet melting on the Sahelian population vulnerability(National Academy of Sciences, 2017-06-20) Defrance, Dimitri; Ramstein, Gilles; Charbit, Sylvie; Vrac, Mathieu; Moise Famien, Adjoua; Sultan, Benjamin; Swingedouw, Didier; Dumas, Christophe; Gemenne, François; Álvarez Solas, Jorge; Vanderlinden, Jean-PaulThe acceleration of ice sheet melting has been observed over the last few decades. Recent observations and modeling studies have suggested that the ice sheet contribution to future sea level rise could have been underestimated in the latest Intergovernmental Panel on Climate Change report. The ensuing freshwater discharge coming from ice sheets could have significant impacts on global climate, and especially on the vulnerable tropical areas. During the last glacial.deglacial period, megadrought episodes were observed in the Sahel region at the time of massive iceberg surges, leading to large freshwater discharges. In the future, such episodes have the potential to induce a drastic destabilization of the Sahelian agro-ecosystem. Using a climate modeling approach, we investigate this issue by superimposing on the Representative Concentration Pathways 8.5 (RCP8.5) baseline experiment a Greenland flash melting scenario corresponding to an additional sea level rise ranging from 0.5 m to 3 m. Our model response to freshwater discharge coming from Greenland melting reveals a significant decrease of the West African monsoon rainfall, leading to changes in agricultural practices. Combined with a strong population increase, described by different demography projections, important human migration flows could be potentially induced. We estimate that, without any adaptation measures, tens to hundreds million people could be forced to leave the Sahel by the end of this century. On top of this quantification, the sea level rise impact over coastal areas has to be superimposed, implying that the Sahel population could be strongly at threat in case of rapid Greenland melting.Publication Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes(Copernicus Gesellschaft MBH, 2011-11-29) Álvarez Solas, Jorge; Montoya, M.; Ritz, C.; Ramstein, G.; Charbit, S.; Dumas, C.; Nisancioglu, K.; Dokken, T.; Ganopolski, A.Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC) and North Atlantic deep water (NADW) formation. However, recent paleoclimate data have revealed that most of these events probably occurred after the AMOC had already slowed down or/and NADW largely collapsed, within about a thousand years (Hall et al., 2006; Hemming, 2004; Jonkers et al., 2010; Roche et al., 2004), implying that the initial AMOC reduction could not have been caused by the Heinrich events themselves. Here we propose an alternative driving mechanism, specifically for Heinrich event 1 (H1; 18 to 15 ka BP), by which North Atlantic ocean circulation changes are found to have strong impacts on LIS dynamics. By combining simulations with a coupled climate model and a three-dimensional ice sheet model, our study illustrates how reduced NADW and AMOC weakening lead to a subsurface warming in the Nordic and Labrador Seas resulting in rapid melting of the Hudson Strait and Labrador ice shelves. Lack of buttressing by the ice shelves implies a substantial ice-stream acceleration, enhanced ice-discharge and sea level rise, with peak values 500-1500 yr after the initial AMOC reduction. Our scenario modifies the previous paradigm of H1 by solving the paradox of its occurrence during a cold surface period, and highlights the importance of taking into account the effects of oceanic circulation on ice-sheets dynamics in order to elucidate the triggering mechanism of Heinrich events.Publication On the triggering mechanism of Heinrich events(National Academy of Sciences, 2011-12-13) Álvarez Solas, Jorge; Ramstein, GillesPublication Submarine melt as a potential trigger of the North East Greenland Ice Stream margin retreat during Marine Isotope Stage 3(Copernicus Gesellschaft MBH, 2019-07-15) Tabone, Ilaria; Robinson, Alexander James; Álvarez Solas, Jorge; Montoya Redondo, María LuisaThe Northeast Greenland Ice Stream (NEGIS) has been suffering a significant ice mass loss during the last decades. This is partly due to increasing oceanic temperatures in the subpolar North Atlantic, which enhance submarine basal melting and mass discharge. This demonstrates the high sensitivity of this region to oceanic changes. In addition, a recent study suggested that the NEGIS grounding line was 20–40 km behind its present-day location for 15 ka during Marine Isotope Stage (MIS) 3. This is in contrast with Greenland temperature records indicating cold atmospheric conditions at that time, expected to favour ice-sheet expansion. To explain this anomalous retreat a combination of atmospheric and external forcings has been invoked. Yet, as the ocean is found to be a primary driver of the ongoing retreat of the NEGIS glaciers, the effect of past oceanic changes in their paleo evolution cannot be ruled out and should be explored in detail. Here we investigate the sensitivity of the NEGIS to the oceanic forcing during the last glacial period using a three-dimensional hybrid ice-sheet–shelf model. We find that a sufficiently high oceanic forcing could account for a NEGIS ice-margin retreat of several tens of kilometres, potentially explaining the recently proposed NEGIS groundingline retreat during Marine Isotope Stage 3.Publication Iceberg discharges of the last glacial period driven by oceanic circulation changes(National Academy of Sciences, 2013-10-08) Álvarez Solas, Jorge; Robinson, Alexander James; Montoya Redondo, María Luisa; Ritz, CatherineProxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet–ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age.