Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Explainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending

dc.contributor.authorAriza Garzón, Miller Janny
dc.contributor.authorArroyo Gallardo, Javier
dc.contributor.authorCaparrini López, Antonio
dc.contributor.authorSegovia Vargas, María Jesús
dc.date.accessioned2024-01-09T14:30:50Z
dc.date.available2024-01-09T14:30:50Z
dc.date.issued2020
dc.description.abstractPeer-to-peer (P2P) lending demands effective and explainable credit risk models. Typical machine learning algorithms offer high prediction performance, but most of them lack explanatory power. However, this deficiency can be solved with the help of the explainability tools proposed in the last few years, such as the SHAP values. In this work, we assess the well-known logistic regression model and several machine learning algorithms for granting scoring in P2P lending. The comparison reveals that the machine learning alternative is superior in terms of not only classification performance but also explainability. More precisely, the SHAP values reveal that machine learning algorithms can reflect dispersion, nonlinearity and structural breaks in the relationships between each feature and the target variable. Our results demonstrate that is possible to have machine learning credit scoring models be both accurate and transparent. Such models provide the trust that the industry, regulators and end-users demand in P2P lending and may lead to a wider adoption of machine learning in this and other risk assessment applications where explainability is required.eng
dc.description.departmentDepto. de Economía Financiera y Actuarial y Estadística
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationAriza-Garzon, Miller Janny, Javier Arroyo, Antonio Caparrini, y Maria-Jesus Segovia-Vargas. «Explainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending». IEEE Access 8 (2020): 64873-90. https://doi.org/10.1109/ACCESS.2020.2984412.
dc.identifier.doi10.1109/access.2020.2984412
dc.identifier.issn2169-3536
dc.identifier.officialurlhttps://doi.org/10.1109/access.2020.2984412
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/abstract/document/9050779
dc.identifier.urihttps://hdl.handle.net/20.500.14352/92059
dc.journal.titleIEEE Access
dc.language.isoeng
dc.page.final64890
dc.page.initial64873
dc.publisherIEEE
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/825215
dc.rights.accessRightsopen access
dc.subject.keywordCredit risk
dc.subject.keywordP2P lending
dc.subject.keywordExplainability
dc.subject.keywordShapley values
dc.subject.keywordBoosting
dc.subject.keywordLogistic regression
dc.subject.ucmCiencias Sociales
dc.subject.unesco53 Ciencias Económicas
dc.titleExplainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublication576c7b36-d6d7-4a3c-8f76-8d9d53d8eb48
relation.isAuthorOfPublication4776976f-8d88-4992-bc6d-eea957d11041
relation.isAuthorOfPublication44aad0f9-4f64-46ee-a6b7-e9a317fa42fd
relation.isAuthorOfPublication.latestForDiscovery576c7b36-d6d7-4a3c-8f76-8d9d53d8eb48

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Explainability_of_a_Machine_Learning.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format

Collections