Explainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending
dc.contributor.author | Ariza Garzón, Miller Janny | |
dc.contributor.author | Arroyo Gallardo, Javier | |
dc.contributor.author | Caparrini López, Antonio | |
dc.contributor.author | Segovia Vargas, María Jesús | |
dc.date.accessioned | 2024-01-09T14:30:50Z | |
dc.date.available | 2024-01-09T14:30:50Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Peer-to-peer (P2P) lending demands effective and explainable credit risk models. Typical machine learning algorithms offer high prediction performance, but most of them lack explanatory power. However, this deficiency can be solved with the help of the explainability tools proposed in the last few years, such as the SHAP values. In this work, we assess the well-known logistic regression model and several machine learning algorithms for granting scoring in P2P lending. The comparison reveals that the machine learning alternative is superior in terms of not only classification performance but also explainability. More precisely, the SHAP values reveal that machine learning algorithms can reflect dispersion, nonlinearity and structural breaks in the relationships between each feature and the target variable. Our results demonstrate that is possible to have machine learning credit scoring models be both accurate and transparent. Such models provide the trust that the industry, regulators and end-users demand in P2P lending and may lead to a wider adoption of machine learning in this and other risk assessment applications where explainability is required. | eng |
dc.description.department | Depto. de Economía Financiera y Actuarial y Estadística | |
dc.description.department | Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA) | |
dc.description.faculty | Fac. de Ciencias Económicas y Empresariales | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | European Commission | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.identifier.citation | Ariza-Garzon, Miller Janny, Javier Arroyo, Antonio Caparrini, y Maria-Jesus Segovia-Vargas. «Explainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending». IEEE Access 8 (2020): 64873-90. https://doi.org/10.1109/ACCESS.2020.2984412. | |
dc.identifier.doi | 10.1109/access.2020.2984412 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.officialurl | https://doi.org/10.1109/access.2020.2984412 | |
dc.identifier.relatedurl | https://ieeexplore.ieee.org/abstract/document/9050779 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/92059 | |
dc.journal.title | IEEE Access | |
dc.language.iso | eng | |
dc.page.final | 64890 | |
dc.page.initial | 64873 | |
dc.publisher | IEEE | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/825215 | |
dc.rights.accessRights | open access | |
dc.subject.keyword | Credit risk | |
dc.subject.keyword | P2P lending | |
dc.subject.keyword | Explainability | |
dc.subject.keyword | Shapley values | |
dc.subject.keyword | Boosting | |
dc.subject.keyword | Logistic regression | |
dc.subject.ucm | Ciencias Sociales | |
dc.subject.unesco | 53 Ciencias Económicas | |
dc.title | Explainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 576c7b36-d6d7-4a3c-8f76-8d9d53d8eb48 | |
relation.isAuthorOfPublication | 4776976f-8d88-4992-bc6d-eea957d11041 | |
relation.isAuthorOfPublication | 44aad0f9-4f64-46ee-a6b7-e9a317fa42fd | |
relation.isAuthorOfPublication.latestForDiscovery | 576c7b36-d6d7-4a3c-8f76-8d9d53d8eb48 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Explainability_of_a_Machine_Learning.pdf
- Size:
- 2.91 MB
- Format:
- Adobe Portable Document Format