Server Power Modeling for Run-time Energy Optimization of Cloud Computing Facilities.
dc.book.title | 6th International conference on sustainability in energy and buildings | |
dc.contributor.author | Arroba, Patricia | |
dc.contributor.author | Risco Martín, José Luis | |
dc.contributor.author | Zapater Sancho, Marina | |
dc.contributor.author | Moya, José Manuel | |
dc.contributor.author | Ayala Rodrigo, José Luis | |
dc.contributor.author | Olcoz Herrero, Katzalin | |
dc.date.accessioned | 2023-06-19T14:55:55Z | |
dc.date.available | 2023-06-19T14:55:55Z | |
dc.date.issued | 2014 | |
dc.description | © 2014 The Authors. © 2014 Elsevier Science BV. International conference on sustainability in energy and buildings (6th. 2014. Cardiff, Gales). Research by Marina Zapater has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). This work has been partially supported by the Spanish Ministry of Economy and Competitiveness, under contracts TIN2008-00508, TEC2012-33892 and IPT-2012-1041-430000, and INCOTEC. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Centro de Supercomputacion y Visuahzacion de Madrid (CeSViMa). | |
dc.description.abstract | As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simultaneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities. | |
dc.description.department | Sección Deptal. de Arquitectura de Computadores y Automática (Físicas) | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Campus de Excelencia Internacional (Moncloa) - Moncloa Campus of International Excellence (UCM-UPM) | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO), España | |
dc.description.sponsorship | INCOTEC | |
dc.description.sponsorship | CeSViMa | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/32852 | |
dc.identifier.doi | 10.1016/j.egypro.2014.12.402 | |
dc.identifier.issn | 1876-6102 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.egypro.2014.12.402 | |
dc.identifier.relatedurl | http://oa.upm.es/36177/1/INVE_MEM_2014_198652.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34837 | |
dc.journal.title | Energy Procedia | |
dc.language.iso | eng | |
dc.page.final | 410 | |
dc.page.initial | 401 | |
dc.publisher | Elsevier Science BV | |
dc.relation.projectID | TIN2008-00508 | |
dc.relation.projectID | TEC2012-33892 | |
dc.relation.projectID | IPT-2012-1041-430000 | |
dc.relation.projectID | PICATA | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 004 | |
dc.subject.keyword | Combinatorial optimization | |
dc.subject.keyword | Metaheuristics | |
dc.subject.ucm | Programación de ordenadores (Informática) | |
dc.subject.unesco | 1203.23 Lenguajes de Programación | |
dc.title | Server Power Modeling for Run-time Energy Optimization of Cloud Computing Facilities. | |
dc.type | journal article | |
dc.volume.number | 62 | |
dcterms.references | [1] P. Scheihing, Creating energy efficient data center, in: Data Center Facilities and Engineering Conference, Washington DC, USA, 2007. [2] J. Markoff, S. Lohr, Intel's huge bet turns iffy, New York Times Technology Section. [3] R. Buyya, et al., Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges, in: PDPTA 2010, Las Vegas, USA, 2010. [4] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang, K. Pentikousis, Energy-efficient cloud computing, Comput. J. 53 (7) (2010) 1045-1051. [5] P. Niles and P. Donovan, Virtualization and Cloud Computing: Optimized Power, Cooling, and Management Maximizes Benefits. White paper 118. Revision 3, Tech. rep., Schneider Electric (2011). [6] A. L. Anthony, H. K. Watson, Techniques for developing analytic models., IBM Systems Journal 11 (4) (1972) 316-328. [7] L. Bianchi, M. Dorigo, L. M. Gambardella, W. J. Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization, Natural Computing: An international journal 8 (2) (2009) 239-287. doi:10.1007/sl 1047-008-9098-4. [8] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Comput. Surv. 35 (3) (2003) 268-308. doi:10.1145/937503.937505. [9] N. Adiga, et al, An Overview of the BlueGene/L Supercomputer, in: SC '02, Salt Lake City, USA, 2002, pp. 60-60. [10] M. Warren, et al., High-density computing: A 240-processor beowulf in one cubic meter, in: SC '02, Salt Lake City, USA, 2002, pp. 61-61. [11] R. Ge, et al., Performance-constrained distributed dvs scheduling for scientific applications on power-aware clusters, in: SC '05, IEEE Computer Society, Washington, DC, USA, 2005, pp. 34-34. [12] C.-H. Hsu, W.-C. Feng, A power-aware run-time system for high-performance computing, in: SC '05, IEEE Computer Society, Washington, DC, USA, 2005. [13] G. Confieras, M. Martonosi, Power prediction for intel xscale processors using performance monitoring unit events, in: ISLPED, New York, NY, USA, 2005, pp. 221-226. [14] A. Lewis, et al., Run-time energy consumption estimation based on workload in server systems, in: HotPower, Berkeley, CA, USA, 2008, pp. 4-4. [15] S. Pelley, et al., Understanding and abstracting total data center power, in: WEED, 2009. [16] F. Bellosa, The benefits of event: driven energy accounting in power-sensitive systems, in: ACM SIGOPS, New York, NY, USA, 2000, pp. 37-42. [17] X. Fan, et al., Power provisioning for a warehouse-sized computer, in: ISCA, New York, NY, USA, 2007, pp. 13-23. [18] D. Meisner, et al., Peak power modeling for data center servers with switched-mode power supplies, in: ISLPED, New York, NY, USA, 2010, pp. 319-324. [19] G. Warkozek, et al., A new approach to model energy consumption of servers in data centers, in: ICIT, 2012, pp. 211-216. [20] A. Bohra, V. Chaudhary, Vmeter: Power modelling for virtualized clouds, in: IPDPSW, 2010, pp. 1-8. [21] J. Brandon, Going green in the data center: Practical steps for your sme to become more environmentally friendly, Processor 29 (39) (2007) 1-30. [22] R.Miller, Google: Raise your data center temperature., http://www.dat acenterknowledge.com/ archives/2008/10/14/google-raise-your-data-center-temper ature/ (2008). [23] Google Data Centers, Efficiency: How we do it. Temperature control, http://www.google.com/intl/en_ALL/about/datacenters/ef f iciency/internal/#temperature (Jan. 2014). [24] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, B. Schroeder, Temperature management in data centers: why some (might) like it hot, SIGMETRICS Perform. Eval. Rev. 40 (1) (2012) 163-174. [25] S. Narendra, A. Chandrakasan, Leakage in Nanometer CMOS Technologies, Integrated Circuits and Systems, Springer, 2010. [26] J. Rabaey, Low Power Design Essentials, Engineering (Springer-11647), Springer, 2009. [27] M. Bao, A. Andrei, P. Eles, Z. Peng, Temperature-aware idle time distribution for leakage energy optimization, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 20 (7) (2012) 1187-1200. [28] M. Zapater, J. L. Ayala, J. M. Moya, K. Vaidyanathan, K. Gross, A. K. Coskun, Leakage and temperature aware server control for improving energy efficiency in data centers, in: DATE ' 13, EDA Consortium, San Jose, CA, USA, 2013, pp. 266-269. [29] C. Reyes-Sierra, C. A. C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art, International Journal of Computational Intelligence Research 2 (2006) 287-308. [30] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intelligence 1(1) (2007) 33-57. [31] M. R. Sierra, C. A. Coello Coello, Improving pso-based multi-objective optimization using crowding, mutation and dominance, in: EMO'05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 505-519. doi:10.1007/978-3-540-31880-4-35. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b18c2bd8-52be-4d79-bd8b-dbd8e970d703 | |
relation.isAuthorOfPublication | d73a810d-34c3-440e-8b5f-e2a7b0eb538f | |
relation.isAuthorOfPublication | 8cfc18ec-4816-404d-982d-21dc07318c07 | |
relation.isAuthorOfPublication.latestForDiscovery | b18c2bd8-52be-4d79-bd8b-dbd8e970d703 |
Download
Original bundle
1 - 1 of 1