Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Server Power Modeling for Run-time Energy Optimization of Cloud Computing Facilities.

dc.book.title6th International conference on sustainability in energy and buildings
dc.contributor.authorArroba, Patricia
dc.contributor.authorRisco Martín, José Luis
dc.contributor.authorZapater Sancho, Marina
dc.contributor.authorMoya, José Manuel
dc.contributor.authorAyala Rodrigo, José Luis
dc.contributor.authorOlcoz Herrero, Katzalin
dc.date.accessioned2023-06-19T14:55:55Z
dc.date.available2023-06-19T14:55:55Z
dc.date.issued2014
dc.description© 2014 The Authors. © 2014 Elsevier Science BV. International conference on sustainability in energy and buildings (6th. 2014. Cardiff, Gales). Research by Marina Zapater has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). This work has been partially supported by the Spanish Ministry of Economy and Competitiveness, under contracts TIN2008-00508, TEC2012-33892 and IPT-2012-1041-430000, and INCOTEC. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Centro de Supercomputacion y Visuahzacion de Madrid (CeSViMa).
dc.description.abstractAs advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simultaneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCampus de Excelencia Internacional (Moncloa) - Moncloa Campus of International Excellence (UCM-UPM)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipINCOTEC
dc.description.sponsorshipCeSViMa
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32852
dc.identifier.doi10.1016/j.egypro.2014.12.402
dc.identifier.issn1876-6102
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.egypro.2014.12.402
dc.identifier.relatedurlhttp://oa.upm.es/36177/1/INVE_MEM_2014_198652.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34837
dc.journal.titleEnergy Procedia
dc.language.isoeng
dc.page.final410
dc.page.initial401
dc.publisherElsevier Science BV
dc.relation.projectIDTIN2008-00508
dc.relation.projectIDTEC2012-33892
dc.relation.projectIDIPT-2012-1041-430000
dc.relation.projectIDPICATA
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordCombinatorial optimization
dc.subject.keywordMetaheuristics
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleServer Power Modeling for Run-time Energy Optimization of Cloud Computing Facilities.
dc.typejournal article
dc.volume.number62
dcterms.references[1] P. Scheihing, Creating energy efficient data center, in: Data Center Facilities and Engineering Conference, Washington DC, USA, 2007. [2] J. Markoff, S. Lohr, Intel's huge bet turns iffy, New York Times Technology Section. [3] R. Buyya, et al., Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges, in: PDPTA 2010, Las Vegas, USA, 2010. [4] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang, K. Pentikousis, Energy-efficient cloud computing, Comput. J. 53 (7) (2010) 1045-1051. [5] P. Niles and P. Donovan, Virtualization and Cloud Computing: Optimized Power, Cooling, and Management Maximizes Benefits. White paper 118. Revision 3, Tech. rep., Schneider Electric (2011). [6] A. L. Anthony, H. K. Watson, Techniques for developing analytic models., IBM Systems Journal 11 (4) (1972) 316-328. [7] L. Bianchi, M. Dorigo, L. M. Gambardella, W. J. Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization, Natural Computing: An international journal 8 (2) (2009) 239-287. doi:10.1007/sl 1047-008-9098-4. [8] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM Comput. Surv. 35 (3) (2003) 268-308. doi:10.1145/937503.937505. [9] N. Adiga, et al, An Overview of the BlueGene/L Supercomputer, in: SC '02, Salt Lake City, USA, 2002, pp. 60-60. [10] M. Warren, et al., High-density computing: A 240-processor beowulf in one cubic meter, in: SC '02, Salt Lake City, USA, 2002, pp. 61-61. [11] R. Ge, et al., Performance-constrained distributed dvs scheduling for scientific applications on power-aware clusters, in: SC '05, IEEE Computer Society, Washington, DC, USA, 2005, pp. 34-34. [12] C.-H. Hsu, W.-C. Feng, A power-aware run-time system for high-performance computing, in: SC '05, IEEE Computer Society, Washington, DC, USA, 2005. [13] G. Confieras, M. Martonosi, Power prediction for intel xscale processors using performance monitoring unit events, in: ISLPED, New York, NY, USA, 2005, pp. 221-226. [14] A. Lewis, et al., Run-time energy consumption estimation based on workload in server systems, in: HotPower, Berkeley, CA, USA, 2008, pp. 4-4. [15] S. Pelley, et al., Understanding and abstracting total data center power, in: WEED, 2009. [16] F. Bellosa, The benefits of event: driven energy accounting in power-sensitive systems, in: ACM SIGOPS, New York, NY, USA, 2000, pp. 37-42. [17] X. Fan, et al., Power provisioning for a warehouse-sized computer, in: ISCA, New York, NY, USA, 2007, pp. 13-23. [18] D. Meisner, et al., Peak power modeling for data center servers with switched-mode power supplies, in: ISLPED, New York, NY, USA, 2010, pp. 319-324. [19] G. Warkozek, et al., A new approach to model energy consumption of servers in data centers, in: ICIT, 2012, pp. 211-216. [20] A. Bohra, V. Chaudhary, Vmeter: Power modelling for virtualized clouds, in: IPDPSW, 2010, pp. 1-8. [21] J. Brandon, Going green in the data center: Practical steps for your sme to become more environmentally friendly, Processor 29 (39) (2007) 1-30. [22] R.Miller, Google: Raise your data center temperature., http://www.dat acenterknowledge.com/ archives/2008/10/14/google-raise-your-data-center-temper ature/ (2008). [23] Google Data Centers, Efficiency: How we do it. Temperature control, http://www.google.com/intl/en_ALL/about/datacenters/ef f iciency/internal/#temperature (Jan. 2014). [24] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, B. Schroeder, Temperature management in data centers: why some (might) like it hot, SIGMETRICS Perform. Eval. Rev. 40 (1) (2012) 163-174. [25] S. Narendra, A. Chandrakasan, Leakage in Nanometer CMOS Technologies, Integrated Circuits and Systems, Springer, 2010. [26] J. Rabaey, Low Power Design Essentials, Engineering (Springer-11647), Springer, 2009. [27] M. Bao, A. Andrei, P. Eles, Z. Peng, Temperature-aware idle time distribution for leakage energy optimization, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 20 (7) (2012) 1187-1200. [28] M. Zapater, J. L. Ayala, J. M. Moya, K. Vaidyanathan, K. Gross, A. K. Coskun, Leakage and temperature aware server control for improving energy efficiency in data centers, in: DATE ' 13, EDA Consortium, San Jose, CA, USA, 2013, pp. 266-269. [29] C. Reyes-Sierra, C. A. C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art, International Journal of Computational Intelligence Research 2 (2006) 287-308. [30] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intelligence 1(1) (2007) 33-57. [31] M. R. Sierra, C. A. Coello Coello, Improving pso-based multi-objective optimization using crowding, mutation and dominance, in: EMO'05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 505-519. doi:10.1007/978-3-540-31880-4-35.
dspace.entity.typePublication
relation.isAuthorOfPublicationb18c2bd8-52be-4d79-bd8b-dbd8e970d703
relation.isAuthorOfPublicationd73a810d-34c3-440e-8b5f-e2a7b0eb538f
relation.isAuthorOfPublication8cfc18ec-4816-404d-982d-21dc07318c07
relation.isAuthorOfPublication.latestForDiscoveryb18c2bd8-52be-4d79-bd8b-dbd8e970d703

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
olcoz16preprint.pdf
Size:
421.55 KB
Format:
Adobe Portable Document Format

Collections