Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On finite index subgroups of a universal group

dc.contributor.authorBrumfield, G.
dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorRamírez Losada, E.
dc.contributor.authorShort, H.
dc.contributor.authorTejada Cazorla, Juan Antonio
dc.contributor.authorToro, M.
dc.date.accessioned2023-06-20T10:35:50Z
dc.date.available2023-06-20T10:35:50Z
dc.date.issued2008-10
dc.description.abstractIt has been shown [H. M. Hilden et al., Invent. Math. 87 (1987), no. 3, 441–456;] that the orbifold group U of the Borromean rings with singular angle 90 degrees is universal, i.e. for every closed orientable 3-manifold M3 there is a finite index subgroup G of U such that M3=H3/G. Since the fundamental group of M3 is the quotient of G modulo the subgroup generated by rotations, one would like to classify the finite index subgroups of U. In this paper, the authors begin the classification of the finite index subgroups that are generated by rotations. The group U acts as a group of isometries of hyperbolic 3-space H3 so that there is a tessellation of H3 by regular dodecahedra any one of which is a fundamental domain for U. The authors construct a closely related Euclidean crystallographic group Uˆ corresponding to a tessellation of E3 by cubes that are fundamental domains for Uˆ, and exhibit a homomorphism φ:U→Uˆ which defines a branched covering H3→E3 that respects the two tessellations. They classify the finite index subgroups of Uˆ, and use their pullback under φ to obtain the main result of the paper: For any positive integer n there is an index n subgroup of U generated by rotations.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21872
dc.identifier.issn1405-213X
dc.identifier.officialurlhttp://www.smm.org.mx/boletinSMM/v14/14-2-6.pdf
dc.identifier.relatedurlhttp://sociedadmatematicamexicana.org.mx/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50710
dc.issue.number2
dc.journal.titleBoletín de la Sociedad Matemática Mexicana. Tercera Serie
dc.language.isoeng
dc.page.final302
dc.page.initial283
dc.publisherSociedad Matemática Mexicana
dc.relation.projectID2006-00825.
dc.rights.accessRightsrestricted access
dc.subject.cdu530.1(063)
dc.subject.keyword3-manifold
dc.subject.keywordorbifold
dc.subject.keywordbranched covering
dc.subject.keyworduniversal link
dc.subject.keyworduniversal group
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn finite index subgroups of a universal group
dc.typejournal article
dc.volume.number14
dcterms.referencesM.A. Armstrong, The fundamental group of the orbit space of a discontinuous group, Math. Proc. Cambridge Philos. Soc., 64, (1968), 299–301. H.M. Brumfield, G.and Hilden, M. T. Lozano, J. M. Montesinos, E. Ramírez-Losada, H. Short, D. Tejada, and M. toro, Three manifolds as geometric branched coverings of the three sphere, to appear in Bol. Soc. Mat. Mexicana. arXiv:0710.1960v1[math.GT], 2007. Theo Hahn (Editor),International Tables for Crystallography, IUCr-Springer, 2005. H. M. Hilden, M. T. Lozano, J. M. Montesinos, and W. C. Whitten, On universal groups and three-manifolds, Invent. Math. 87 (3) (1987) 441–456. H.M. Hilden, M.T. Lozano, and J. M. Montesinos-Amilibia, The arithmetic structure of a universal group, Atti Sem. Mat. Fis. Univ. Modena, 49 (suppl.), (2001), 1–14. Dedicated to the memory of Professor M. Pezzana (Italian). W. P. Thurston, Three-dimensional geometry and topology. Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication77359969-4313-4334-adef-1c2d7413fbb5
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
montesinos39s.pdf
Size:
240.11 KB
Format:
Adobe Portable Document Format

Collections