Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Campos vectoriales holomorfos completos y condición jacobiana

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2005

Defense date

2004

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

En esta memoria estudiamos las soluciones enteras de un campo vectorial polinómico (es decir, soluciones del campo dadas para todo valor del tiempo complejo) definido en un espacio afín complejo de dimensión dos, C2. Estas soluciones dan lugar a trayectorias sobre las que el campo es completo. La principal contribución de esta tesis esla clasificación de todos los campos polinómicos en C2 que son completos sobre una trayectoria transcendente (es decir, propia y no algebraica), salvo automorfismo polinómico. La demostración de este resultado se basa en una combinación del estudio de las propiedades globales de la foliación definida por el campo (existencia de un polinomio complejo con respecto al cual la foliación tiene una geometría sencilla), con algunos métodos transcendentes sobre la distribución de los valores de una función entera (Teoremas de tipo Borel). Como aplicación demostramos que todo campo vectorial polinómico en C2 completo sobre una trayectoria transcendente y singular (es decir, tal que su clausura contiene ceros del campo) tiene todas sus soluciones enteras, y por tanto, es completo en C2. Estudiamos también propiedades no genéricas para un campo relacionadas con la completitud. Demostramos que la propiedad de ser completo es no genérica en el conjunto de campos polinómicos de grado > 2. Probamos, además, que todo campo vectorial polinómico completo en C2 tiene como máximo un cero aislado, y clasificamos todos aquellos con un cero que no es tipo Poincaré-Dulac. Por último estudiamos aplicaciones polinómicas en Cn con determinante de su jacobino constante. Asociamos a una tal aplicación n campos vetoriales polinómicos (las columnas de la inversa de la matriz jacobiana de la aplicación), que nos permiten dar condiciones necesariasy suficientes para que dicha aplicación sea invertible. De esta manera, reformulamos la Conjetura Jacobiana en términos de campos completos.

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Álgebra, leída el 07-05-2004

UCM subjects

Unesco subjects

Keywords

Collections