Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools

dc.contributor.authorArias Molinares, Daniela
dc.contributor.authorGarcía Palomares, Juan Carlos
dc.contributor.authorRomanillos Arroyo, Gustavo
dc.contributor.authorGutiérrez Puebla, Javier
dc.date.accessioned2024-07-24T13:05:44Z
dc.date.available2024-07-24T13:05:44Z
dc.date.issued2023-06-15
dc.description.abstractIn the past ten years, cities have experienced a burst of micromobility services as they offer a flexible transport option that allows users to cover short trips or the first/last mile of longer trips. Despite their potential impacts on mobility and the fact that they offer a cleaner, more environmentally friendly alternative to private cars, few efforts have been devoted to studying patterns of use. In this paper we introduce new ways of visualizing and understanding spatiotemporal patterns of micromobility in Madrid based on the conceptual framework of Time-Geography. Hägerstrand’s perspectives are taken and adapted to analyze data regarding use of micromobility, considering each trip departure location (origins) obtained from GPS records. The datasets are collected by three of the most important micromobility operators in the city. Trip origins (points) are processed and visualized using space–time cubes and then spatially analyzed in a GIS environment. The results of this analysis help to identify the landscape of micromobility in the city, detecting hotspot areas and location clusters that share similar behavior throughout space and time in terms of micromobility departures. The methods presented can have application in other cities and could offer insights for transport planners and micromobility operators to better inform urban planning and transportation policy. Additionally, the information could help operators to optimize vehicle redistribution and maintenance/recharging tasks, reducing congestion and increasing efficiency.
dc.description.departmentDepto. de Geografía
dc.description.facultyFac. de Geografía e Historia
dc.description.refereedFALSE
dc.description.statuspub
dc.identifier.citationArias-Molinares, D., García-Palomares, J.C., Romanillos, G. et al. Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools. J Geogr Syst 25, 403–427 (2023). https://doi.org/10.1007/s10109-023-00418-9
dc.identifier.doi10.1007/s10109-023-00418-9
dc.identifier.essn1435-5949
dc.identifier.issn1435-5930
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s10109-023-00418-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107130
dc.journal.titleJournal of Geographical Systems
dc.language.isoeng
dc.page.final427
dc.page.initial403
dc.publisherSpringer Nature
dc.rights.accessRightsopen access
dc.subject.cdu91
dc.subject.jelO18
dc.subject.jelR41
dc.subject.jelC23
dc.subject.jelC29
dc.subject.jelC38
dc.subject.keywordMicromobility
dc.subject.keywordSpace–time cubes
dc.subject.keywordGIS
dc.subject.keywordTime series
dc.subject.keywordHotspot
dc.subject.keywordClustering
dc.subject.ucmGeografía
dc.subject.unesco2505 Geografía
dc.titleUncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools
dc.typejournal article
dc.type.hasVersionAO
dc.volume.number25
dspace.entity.typePublication
relation.isAuthorOfPublicationf0418a89-a780-4090-87d8-ea6214818159
relation.isAuthorOfPublicationb25b5524-305e-4aa0-a30e-5b15a398806c
relation.isAuthorOfPublication7af12201-dd9c-4deb-8f3e-16bacc43e6dd
relation.isAuthorOfPublication0b4c21b2-a5c3-4dfb-8088-c1ba13c4dd17
relation.isAuthorOfPublication.latestForDiscoveryf0418a89-a780-4090-87d8-ea6214818159

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Art2-s10109-023-00418-9.pdf
Size:
4.19 MB
Format:
Adobe Portable Document Format

Collections