Staggered diffusivities in lattice gas cellular automata
dc.contributor.author | Brito, Ricardo | |
dc.contributor.author | Errnst, M. H. | |
dc.contributor.author | Kirkpatrick, T. R. | |
dc.date.accessioned | 2023-06-20T18:48:16Z | |
dc.date.available | 2023-06-20T18:48:16Z | |
dc.date.issued | 1991-01 | |
dc.description.abstract | The majority of LGCAs has spurious conservation laws, the so-called staggered invariants, first discovered by Kadanoff, McNamara, and Zanetti. Consequently there are additional hydrodynamic modes of diffusive type, which modify mode coupling theories and the nonlinear fluid dynamic equations. The diffusivities of these staggered modes are evaluated in the mean field approximation for LGCAs on triangular lattices, starting from the Green-Kubo formulas for the staggered diffusivities. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22390 | |
dc.identifier.doi | 10.1007/BF01020871 | |
dc.identifier.issn | 0022-4715 | |
dc.identifier.officialurl | http://dx.doi.org/10.1007/BF01020871 | |
dc.identifier.relatedurl | http://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58666 | |
dc.issue.number | 01-feb | |
dc.journal.title | Journal of Statistical Physics | |
dc.page.final | 295 | |
dc.page.initial | 283 | |
dc.publisher | Springer | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Staggered Invariants | |
dc.subject.keyword | Lattice Gas Cellular Automata | |
dc.subject.keyword | Ca-Fluids | |
dc.subject.keyword | Staggered Diffusivities | |
dc.subject.keyword | Green-Kubo Relations | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Staggered diffusivities in lattice gas cellular automata | |
dc.type | journal article | |
dc.volume.number | 62 | |
dcterms.references | 1.L.P. Kadanoff, G. McNamara and G. Zanetti, Phys. Rev. A 40:4527 (1989). 2.G. Zanetti, Phys. Rev. A 40:1539 (1989). 3.D. d'Humières, P. Lallemand and U. Frisch, Europhys. Lett. 2:291 (1986). 4.B. Chopard and M. Droz, Phys. Lett. A 126:476 (1988). 5.S. Chen, M. Lee, K. H. Zhao and G. D. Doolen, Physica D 37:42 (1989). 6.M. H. Ernst and J. W. Dufty, J. Stat. Phys. 58:57 (1990). 7.M. H. Ernst, Liquids, Freezing and the Glass Transition, D. Levesque, J. P. Hansen and J. Zinn-Justin, eds. (Elsevier, 1990). 8.P. M. Binder and M. H. Ernst, Physica A 164:91 (1990). 9.H. B. Nielsen and N. Ninomiya, Nucl. Phys. B 185:20 (1981); 193:173 (1981). 10.M. H. Ernst, Physica D (1990). 11.T. Naitoh, M. H. Ernst and J. W. Dufty, Phys. Rev. A 42 (1990). 12.T. R. Kirkpatrick and M. H. Ernst, to be published. 13.J. P. Rivet, Complex Systems 1:839 (1987). 14.M. H. Ernst, in Fundamental Problems in Statistical Mechanics, Vol. VII, H. van Beijeren, ed. (North-Holland, Amsterdam, 1990). 15.D. d'Humières and P. Lallemand, Complex Systems 1:599 (1987). 16.U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau and J. P. Rivet, Complex Systems 1:649 (1987). 17.G. Zanetti, private communication (1990). 18.R. Schmitz and J. W. Dufty, Phys. Rev. A 41:4294 (1990). 19.S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, 1970). | |
dspace.entity.type | Publication |