Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Staggered diffusivities in lattice gas cellular automata

dc.contributor.authorBrito, Ricardo
dc.contributor.authorErrnst, M. H.
dc.contributor.authorKirkpatrick, T. R.
dc.date.accessioned2023-06-20T18:48:16Z
dc.date.available2023-06-20T18:48:16Z
dc.date.issued1991-01
dc.description.abstractThe majority of LGCAs has spurious conservation laws, the so-called staggered invariants, first discovered by Kadanoff, McNamara, and Zanetti. Consequently there are additional hydrodynamic modes of diffusive type, which modify mode coupling theories and the nonlinear fluid dynamic equations. The diffusivities of these staggered modes are evaluated in the mean field approximation for LGCAs on triangular lattices, starting from the Green-Kubo formulas for the staggered diffusivities.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22390
dc.identifier.doi10.1007/BF01020871
dc.identifier.issn0022-4715
dc.identifier.officialurlhttp://dx.doi.org/10.1007/BF01020871
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58666
dc.issue.number01-feb
dc.journal.titleJournal of Statistical Physics
dc.page.final295
dc.page.initial283
dc.publisherSpringer
dc.rights.accessRightsmetadata only access
dc.subject.cdu536
dc.subject.keywordStaggered Invariants
dc.subject.keywordLattice Gas Cellular Automata
dc.subject.keywordCa-Fluids
dc.subject.keywordStaggered Diffusivities
dc.subject.keywordGreen-Kubo Relations
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleStaggered diffusivities in lattice gas cellular automata
dc.typejournal article
dc.volume.number62
dcterms.references1.L.P. Kadanoff, G. McNamara and G. Zanetti, Phys. Rev. A 40:4527 (1989). 2.G. Zanetti, Phys. Rev. A 40:1539 (1989). 3.D. d'Humières, P. Lallemand and U. Frisch, Europhys. Lett. 2:291 (1986). 4.B. Chopard and M. Droz, Phys. Lett. A 126:476 (1988). 5.S. Chen, M. Lee, K. H. Zhao and G. D. Doolen, Physica D 37:42 (1989). 6.M. H. Ernst and J. W. Dufty, J. Stat. Phys. 58:57 (1990). 7.M. H. Ernst, Liquids, Freezing and the Glass Transition, D. Levesque, J. P. Hansen and J. Zinn-Justin, eds. (Elsevier, 1990). 8.P. M. Binder and M. H. Ernst, Physica A 164:91 (1990). 9.H. B. Nielsen and N. Ninomiya, Nucl. Phys. B 185:20 (1981); 193:173 (1981). 10.M. H. Ernst, Physica D (1990). 11.T. Naitoh, M. H. Ernst and J. W. Dufty, Phys. Rev. A 42 (1990). 12.T. R. Kirkpatrick and M. H. Ernst, to be published. 13.J. P. Rivet, Complex Systems 1:839 (1987). 14.M. H. Ernst, in Fundamental Problems in Statistical Mechanics, Vol. VII, H. van Beijeren, ed. (North-Holland, Amsterdam, 1990). 15.D. d'Humières and P. Lallemand, Complex Systems 1:599 (1987). 16.U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau and J. P. Rivet, Complex Systems 1:649 (1987). 17.G. Zanetti, private communication (1990). 18.R. Schmitz and J. W. Dufty, Phys. Rev. A 41:4294 (1990). 19.S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, 1970).
dspace.entity.typePublication

Download

Collections