Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Structural, Mechanical, and Transport Properties of Electron Beam-Irradiated Chitosan Membranes at Different Doses

Loading...
Thumbnail Image

Full text at PDC

Publication date

2018

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Citations
Google Scholar

Citation

Abstract

Chitosan powder irradiated by electron beam at different doses, up to 250 kGy, was used to prepare membranes for drug release applications. The irradiation effect on the molecular weight of powder chitosan, the characteristics of the prepared membranes, and their transport of sulfamerazine sodium salt (SULF) were investigated. The effect of the addition of glutaraldehyde (GLA) as a crosslinking agent in the chitosan solution used for the preparation of the membranes was also studied. A decrease in the chitosan molecular weight with the increase in the irradiation dose was observed, while the membranes prepared with the irradiated chitosan at higher dose exhibited lower swelling. However, an opposite behavior was detected when the membranes were prepared with GLA-crosslinked chitosan. A GLA crosslinking agent reduced the crystallinity of the chitosan membranes and the swelling, whereas the water contact angle and SULF transport increased with the increase in the irradiation dose.

Research Projects

Organizational Units

Journal Issue

Description

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. The authors would like to thank Grazyna Zakrzewska-Trznadel from the Institute of Chemical Nuclear and Technology in Warsaw (Poland) for her help on the electron beam irradiation of the chitosan powder.

UCM subjects

Unesco subjects

Keywords

Collections