Water and methanol transport in Nafion membranes with different cationic forms 1. Alkali monovalent cations

dc.contributor.authorGodino Gómez, María Paz
dc.contributor.authorBarragán García, Vicenta María
dc.contributor.authorGarcía Villaluenga, Juan Pedro
dc.contributor.authorRuiz Bauzá, Carlos
dc.contributor.authorSeoane Rodríguez, Benjamín
dc.date.accessioned2023-06-20T10:33:56Z
dc.date.available2023-06-20T10:33:56Z
dc.date.issued2006-09-29
dc.description© 2006 Elsevier B.V. Financial support from the University Complutense of Madrid under Project 052PR13273 is gratefully acknowledged.
dc.description.abstractThe mass flux originated when two methanol-water solutions of different methanol concentration are separated by a Nation 117 membrane in acid (H+) and different alkali metal forms (Li+, Na+, K+, Rb+, Cs+) have been measured, as a function of the methanol concentration difference. From the experimental results, the methanol and water permeabilities have been estimated for the different forms of the membrane. The results show that the cationic form of the membrane strongly influences on the methanol and water permeabilities with respect to the values corresponding to its acid form. Moreover, this influence is different for water and methanol depending on the substituted cation. This strong influence of the cationic form of the membrane on the methanol and water permeabilities could be important in relation to the development of new membranes to decrease the methanol crossover in direct methanol fuel cells.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversity Complutense of Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20648
dc.identifier.citation[1] A. Heinzel, V.M. Barragán, J. Power Sources 84 (1999) 70–74. [2] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40–47. [3] J. Zhang, Y. Wang, Fuel Cells 4 (2004) 1–2. [4] M. Shen, K. Scott, J. Power Sources 148 (2005) 24–31. [5] V.M. Barragán, A. Heinzel, J. Power Sources 104 (2002) 66–72. [6] J. Kallo, J. Kamera, W. Lehnert, R. Von Helmolt, J. Power Sources 127 (2004) 181–186. [7] V. Gogel, T. Frey, Z. Yonsgsheng, K.A. Friedrich, L. JÖrinsen, J. Garche, J. Power Sources 127 (2004) 172–180. [8] H.L.Tang, M. Pan, S.P. Jiang, R.Z.Yuan, Mater. Lett. 59 (2005) 3766–3770. [9] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, Solid State Ionics 150 (2002) 115–122. [10] W.C. Choi, J.D. Kim, S.I. Woo, J. Power Sources 96 (2001) 411– 414. [11] H. Lin, T.L. Yu, L. Huang, L. Chen, K. Shen, G. Jung, J. Power Sources 150 (2005) 11–19. [12] V. Tricoli, J. Electrochem. Soc. 145 (1998) 3798–3801. [13] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Power Sources 130 (2004) 22–29. [14] G. Suresh, X.M. Scindia, A.K. Pandey, A. Goswami, J. Membr. Sci. 250 (2005) 39–45. [15] N.H. Jalani, R. Datta, J. Membr. Sci. 264 (2005) 167–175. [16] D. Nandan, H. Mohan, R.M. Iyer, J. Membr. Sci. 71 (1992) 69–80. [17] L.G. Lage, P.G. Delgado, Y. Kawano, Eur. Polym. J. 40 (2004) 1309–1316. [18] T. Okada, H. Satou, M. Okuno, M. Yuasa, J. Phys. Chem. B 106 (2002) 1267–1273. [19] A. Goswami, A. Acharya, A.K. Pandey, J. Phys. Chem. B 105 (2001) 9196–9201. [20] M. Legras, Y. Hirata, Q.T. Nguyen, D. Langevin, M.Métayer, Desalination 147 (2002) 351–357. [21] M. Kameche, C. Innocent, F. Xu, G. Pourcelly, Z. Derriche, Desalination 168 (2004) 319–327. [22] S. Koter, P. Piotrowski, J. Kerres, J. Membr. Sci. 153 (1999) 83–90. [23] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, J. Membr. Sci. 274 (2006) 116–122. [24] J. D’Ans, H. Surawsky, C. Synowietz, Densities of liquid systems and their capacities, in: Numerical Data and Functional Relationships in Science and Technology. Group V. Macroscopic and Technical Properties of Matter, vol. 1, Springer, New York, 1977. [25] H.A. Every, M.A. Hickner, J.E. McGrath, T.A. Zawodzinski, J. Membr. Sci. 250 (2005) 183–188. [26] P.S. Kauranen, E. Skou, J. Appl. Electrochem. 26 (1996) 909–917.
dc.identifier.doi10.1016/j.jpowsour.2006.02.006
dc.identifier.issn0378-7753
dc.identifier.officialurlhttp://dx.doi.org/doi:10.1016/j.jpowsour.2006.02.006
dc.identifier.relatedurlhttp://pdn.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50546
dc.issue.number1
dc.journal.titleJournal of Power Sources
dc.language.isoeng
dc.page.final186
dc.page.initial181
dc.publisherElsevier Science BV
dc.relation.projectID052PR13273
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordFuel-cell
dc.subject.keywordExchange membranes
dc.subject.keywordDiffusion-coefficient
dc.subject.keywordSelf-diffusion
dc.subject.keywordCrossover
dc.subject.keywordProton
dc.subject.keywordIon
dc.subject.keywordPerformance
dc.subject.keywordBehavior
dc.subject.keywordSorption.
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleWater and methanol transport in Nafion membranes with different cationic forms 1. Alkali monovalent cations
dc.typejournal article
dc.volume.number160
dspace.entity.typePublication
relation.isAuthorOfPublicationd2c307ae-39ce-419e-a520-2e71b0d84e09
relation.isAuthorOfPublication767d7957-0d58-4121-ab42-43d9165389a9
relation.isAuthorOfPublication89cfc24c-28fa-46fc-9b17-8eafe78b3a89
relation.isAuthorOfPublication.latestForDiscoveryd2c307ae-39ce-419e-a520-2e71b0d84e09
Download
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
BARRAGÁN13NO.pdf
Size:
232.38 KB
Format:
Adobe Portable Document Format
Collections