Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry

dc.contributor.authorÁlvarez Herrero, Alberto
dc.contributor.authorGuerrero Padrón, Héctor
dc.contributor.authorLevy, David
dc.contributor.authorBernabeu Martínez, Eusebio
dc.date.accessioned2023-06-20T19:04:38Z
dc.date.available2023-06-20T19:04:38Z
dc.date.issued2002-11-01
dc.description© 2002 Optical Society of America. The authors thank A. J. Fort for his helpful work on the growth of the TiO_2 films.
dc.description.abstractAn optical method to determine the nanostructure and the morphology of porous thin films is presented. This procedure is based on the response of a side-polished optical fiber with the film under study, when an adsorption-desorption cycle is carried out. Spectroscopic ellipsometry provides additional information about the optical properties and adsorption behavior of the film. Pore size distribution, anisotropy, and inhomogeneity of films can be determined by use of these two complementary techniques. To check the performances and suitability of the optical method, we have characterized a typical porous material: a TiO_2 film deposited by evaporation. Water vapor has been used for the adsorption cycles. The well-known columnar structure of the evaporated TiO_2 has been evidenced, and the relation between the nanostructure and the optical properties of the film is showed.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26773
dc.identifier.doi10.1364/AO.41.006692
dc.identifier.issn1559-128X
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.41.006692
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59213
dc.issue.number31
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final7701
dc.page.initial6692
dc.publisherThe Optical Society Of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPrincipal Refractive-Indexes
dc.subject.keywordThin-Films
dc.subject.keywordTitanium
dc.subject.keywordDioxide
dc.subject.keywordPorosity
dc.subject.keywordOxide
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleAnalysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry
dc.typejournal article
dc.volume.number41
dcterms.references1. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989). 2. J. S. Chen, S. Chao, J. S. Kao, G. R. Lai, W. H. Wang, “Substrate-dependent optical absorption characteristics of titanium dioxide thin films,” Appl. Opt. 36, 4403–4408 (1997). 3. B. A. Movchan, A. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. (USSR) 28, 83–90 (1969). 4. J. A. Thornton, “High rate thick film growth,” Annu. Rev. Mater. Sci. 7, 239–260 (1977). 5. R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984). 6. A. G. Dirks, H. J. Leamy, “Columnar nanostructure in vapor deposited thin films,” Thin Solid Films 45, 219–323 (1977). 7. P. Ramanlal, L. M. Sander, “Theory of ballistic aggregation,” Phys. Rev. Lett. 54, 1828–1831 (1985). 8. I. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). 9. F. Flory, D. Endelema, E. Pelletier, I. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993). 10. I. Hodgkinson, J. Hazel, Q. H. Wu, “In situ measurement of principal refractive indices of thin films by two-angle ellipsometry,” Thin Solid Films 313–314, 368–372 (1998). 11. C. K. Carniglia, “Ellipsometric calculation for nonabsorbing thin films with linear refractive-index gradients,” J. Opt. Soc. Am. A 7, 848–856 (1990). 12. Md. Mosaddeq-ur-Rahman, G. Yu, K. M. Krishna, T. Soga, J. Watanabe, T. Jimbo, M. Umeno, “Determination of optical constants of solgel-derived inhomogeneous TiO2 films by spectroscopic ellipsometry and transmission spectroscopy,” Appl. Opt. 37, 691–697 (1998). 13. G. Parjadis de Lariviére, J. M. Frigerio, F. Bridou, J. Rivory, “Modelling of ellipsometric data of inhomogeneous TiO2 films,” Thin Solid Films 233–234, 458–462 (1993). 14. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35, 6703–6707 (1996). 15. A. Álvarez-Herrero, A. J. Fort, H. Guerrero, E. Bernabeu, “Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties,” Thin Solid Films 349, 212–219 (1999). 16. A. Álvarez-Herrero, R. L. Heredero, E. Bernabeu, D. Levy, “Adsorption of water on porous Vycor glass studied by ellipsometry,” Appl. Opt. 40, 527–532 (2001). 17. B. P. Pal, G. R. Chakravarty, “All-fiber wavelength selective components for optical communication,” Commun. Instr. 5, 181–208 (1997). 18. S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1997). 19. R. M. A. Azzam, N. N. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977). 20. R. W. Collins, D. E. Aspnes, E. A. Irene, “Proceedings of the Second International Conference on Spectroscopic Ellipsometry,” Thin Solid Films 313–314 (1998). 21. V. A. Tolmachev, “Adsorption-ellipsometry method of studying the optical profile, thickness, and porosity of thin films,” J. Opt. Technol. 66, 596–607 (1999). 22. V. A. Tolmachev, “Determination of the porosity of uniform films by adsorption-ellipsometric method,” Opt. Spectrosc. 84, 584–588 (1998). 23. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). 24. D. E. Aspnes, A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt. 14, 220–228 (1975). 25. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1999). 26. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).
dspace.entity.typePublication
relation.isAuthorOfPublicatione77a30e7-98fe-421b-8010-077246ffcbdf
relation.isAuthorOfPublication50530470-f2cc-46ba-85f2-e5f5643da51b
relation.isAuthorOfPublication.latestForDiscoverye77a30e7-98fe-421b-8010-077246ffcbdf

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E66libre.pdf
Size:
736.2 KB
Format:
Adobe Portable Document Format

Collections