Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Control of waveguide properties by tuning femtosecond laser induced compositional changes

dc.contributor.authorDel Hoyo Muñoz, Jesús
dc.contributor.authorMartínez Vázquez, Rebeca
dc.contributor.authorSotillo Buzarra, Belén
dc.contributor.authorTeddy Fernández, Toney
dc.contributor.authorSiegel, Jan
dc.contributor.authorFernández Sánchez, Paloma
dc.contributor.authorOsellame, Roberto
dc.contributor.authorSolís Céspedes, Francisco Javier
dc.date.accessioned2023-06-19T13:31:45Z
dc.date.available2023-06-19T13:31:45Z
dc.date.issued2014
dc.description© 2014 AIP Publishing LLC. This work was partially supported by the Spanish Ministry Economy and Competitiveness (MINECO, TEC2011-22422, MAT2012-31959), J.H. and T.T.F. acknowledge funding from the JAE CSIC Program (pre- and post-doctoral fellowships, respectively, co-funded by the European Social Fund). B. Sotillo acknowledges her funding in the frame of CSD2009-00013 (MINECO).
dc.description.abstractLocal compositional changes induced by high repetition rate fs-laser irradiation can be used to produce high performance optical waveguides in phosphate-based glasses. The waveguide refractive index contrast is determined by the local concentration of La, which can be changed by the action of the writing laser pulses. In this work, we have investigated the degree of control that can be exerted using this waveguide writing mechanism over the cross-section of the guiding region, and the local refractive index and compositional changes induced. These variables can be smoothly controlled via processing parameters using the slit shaping technique with moderate Numerical Aperture (NA 0.68) writing optics. The combined use of X-ray microanalysis and near field refractive index profilometry evidences a neat linear correlation between local La content and refractive index increase over a broad Δn interval (>3 x 10^2). This result further confirms the feasibility of generating efficient, integrated optics elements via spatially selective modification of the glass composition.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry Economy and Competitiveness (MINECO)
dc.description.sponsorshipJAE CSIC Program
dc.description.sponsorshipEuropean Social Fund
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29362
dc.identifier.doi10.1063/1.4896846
dc.identifier.issn0003-6951
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4896846
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33945
dc.issue.number13
dc.journal.titleApplied physics letters
dc.language.isoeng
dc.page.final131101/4
dc.page.initial131101/1
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTEC2011-22422
dc.relation.projectIDMAT2012-31959
dc.relation.projectIDCSD2009-00013
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordCompositional changes
dc.subject.keywordWaveguide properties
dc.subject.ucmFísica de materiales
dc.titleControl of waveguide properties by tuning femtosecond laser induced compositional changes
dc.typejournal article
dc.volume.number105
dcterms.references1 K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996). 2 R. Osellame, N. Chiodo, G. Della Valle, G. Cerullo, R. Ramponi, P. Laporta, A. Killi, U. Morgner, and O. Svelto, IEEE J. Sel. Top. Quantum Electron. 12, 277 (2006). 3 J. Burghoff, C. Grebing, S. Nolte, and A. T€unnermann, Appl. Phys. Lett. 89, 081108 (2006). 4 J. Siegel, J. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, Appl. Phys. Lett. 86, 121109 (2005). 5 J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001). 6 A. Ferrer, D. Jaque, J. Siegel, A. R. De la Cruz, and J. Solis, J. Appl. Phys. 109, 093107 (2011). 7 K. Hirao and K. Miura, J. Non. Cryst. Solids 239, 91 (1998). 8 O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, Opt. Mater. 17, 379 (2001). 9 D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, J. Appl. Phys. 108, 033110 (2010). 10 R. Martínez-Vázquez, R. Osellame, G. Cerullo, R. Ramponi, and O. Svelto, Opt. Express 15, 12628–12635 (2007). 11 S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, J. Non. Cryst. Solids 357, 2387 (2011). 12 Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Lett. 34, 136, (2009). 13 Y. Yonesaki, K. Miura, R. Araki, K. Fujita, and K. Hirao, J. Non. Cryst. Solids 351, 885 (2005). 14 M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011). 15 M. Sakakura, T. Kurita, M. Shimizu, K. Yoshimura, Y. Shimotsuma, N. Fukuda, K. Hirao, and K. Miura, Opt. Lett. 38, 4939 (2013). 16 F. Luo, J. Song, X. Hu, H. Sun, G. Lin, H. Pan, Y. Cheng, L. Liu, J. Qiu Q. Zhao, and Z. Xu, Opt. Lett. 36, 2125 (2011). 17 P. Mardilovich, L. B. Fletcher, N. W. Troy, L. Yang, H. Huang, S. H. Risbud, and D. M. Krol, Int. J. Appl. Glas. Sci. 4, 87 (2013). 18 J. Hoyo, V. Berdejo, T. T. Fernandez, A. Ferrer, A. Ruiz, J. A. Valles, M. A. Rebolledo, I. Ortega-Feliu, and J. Solis, Laser Phys. Lett. 10, 105802 (2013). 19 T. T. Fernández, P. Haro-González, B. Sotillo, M. Hernández, D. Jaque, P. Fernández, C. Domingo, J. Siegel, and J. Solís, Opt. Lett. 38, 5248 (2013). 20 T. T. Fernández, M. Hernández, B. Sotillo, S. M. Eaton, G. Jose, R. Osellame, A. Jha, P. Fernández, and J. Solís, Opt. Express 22, 15298 (2014). 21 R. K. Brow, E. Metwalli, and D. L. Sidebottom, Proc. SPIE 4102, 88–94 (2000). 22 S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, Opt. Express 16, 9443 (2008). 23 A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, Opt. Express 21, 2978 (2013). 24 The experimental refractive index map used for the estimation had a maximum Dn¼1.5_10_2 at 670 nm, similar to the one estimated from waveguide NA measurements at 1620 nm.19 The dispersion of the glass seems thus little affected by the compositional change. 25 A. Tervonen, B. R. West, and H. Seppo, Opt. Eng. 50, 071107 (2011). 26 M. Sun, U. Eppelt, W. Schulz, and J. Zhu, Opt. Mater. Express 3, 1716 (2013).
dspace.entity.typePublication
relation.isAuthorOfPublicationeaed2bb8-3f7e-4586-a2f3-29e28ae50394
relation.isAuthorOfPublication11b0d4f7-eac9-4288-b158-f8d1cdec0083
relation.isAuthorOfPublicationdaf4b879-c4a8-4121-aaff-e6ba47195545
relation.isAuthorOfPublication.latestForDiscovery11b0d4f7-eac9-4288-b158-f8d1cdec0083

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1799.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format

Collections