Uniform bounds on complexity and transfer of global properties of Nash functions

Thumbnail Image
Full text at PDC
Publication Date
Coste, M.
Shiota, Masahiro
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Walter de Gruyter & co
Google Scholar
Research Projects
Organizational Units
Journal Issue
We show that the complexity of semialgebraic sets and mappings can be used to parametrize Nash sets and mappings by Nash families. From this we deduce uniform bounds on the complexity of Nash functions that lead to first-order descriptions of many properties of Nash functions and a good behaviour under real closed field extension (e.g. primary decomposition). As a distinguished application, we derive the solution of the extension and global equations problems over arbitrary real closed fields, in particular over the field of real algebraic numbers. This last fact and a technique of change of base are used to prove that the Artin-Mazur description holds for abstract Nash functions on the real spectrum of any commutative ring, and solve extension and global equations in that abstract setting. To complete the view, we prove the idempotency of the real spectrum and an abstract version of the separation problem. We also discuss the conditions for the rings of abstract Nash functions to be noetherian.
C. Andradas, L. Bröcker and J.M. Ruiz: Constructible sets in real geometry, Ergeb. Math., Vol. 33, Springer-Verlag, 1996. M. E. Alonso and M-F. Roy: Real strict localizations, Math. Z. 194 (1987) 429–441. J. Bochnak, M. Coste and M-F. Roy: Real algebraic geometry, Ergeb. Math., Vol. 36, Springer-Verlag, 1998. M. Coste, J. Ruiz and M. Shiota: Approximation in compact Nash manifolds, Amer. J. Math. 117 (1995) 905–927. M. Coste, J. Ruiz and M. Shiota: Separation, factorization and finite sheaves on Nash manifolds, Compositio Math. 103 (1996) 31–62. M. Coste and M. Shiota: Nash functions on noncompact Nash manifolds, to appear in Ann. scient. Éc. Norm. Sup. F. Cucker: Sur les anneaux des sections globales du faisceau structural sur le spectre réel, Comm. Algebra 16 (1988)307–323. H. Delfs and M. Knebusch: Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces, Math. Z. 178 (1981)175–213. L. van den Dries: Tame topology and o-minimal structures, London Math. Soc. Lecture Notes, Vol. 248, Cambridge Univ. Press, 1998. S. Greco: Two theorems on excellent rings, Nagoya Math. J. 69 (1976)139–149. A. Grothendieck and J. Dieudonné: Éléments de géométrie algébrique IV : Étude locale des schémas et des morphismes de schémas (Quatrième partie), Inst. Hautes Etud. Sci., Publ. Math. 32 (1967). L. Mahé: Signatures et composantes connexes, Math. Ann. 260 (1982)191–210. R. Quarez: The idempotency of the real spectrum implies the extension theorem for Nash functions, Math. Z. 227 (1998)555–570. R. Quarez: The noetherian space of abstract locally Nash sets, Comm. Algebra 26 (1998)1945–1966. R. Ramanakoraisina: Complexité des fonctions de Nash, Comm. Algebra 17 (1989)1395–1406. R. Ramanakoraisina: Bezout theorem for Nash functions, J. Pure Appl. Algebra 61 (1989)295–301. M. Raynaud: Anneaux locaux henséliens, Lecture Notes in Math., Vol. 169, Springer-Verlag, 1970 M-F. Roy: Faisceau structural sur le spectre réel et fonctions de Nash, in Géométrie algébrique réelle et formes quadratiques, ed. J-L. Colliot-Thélène et al., Lecture Notes in Math., Vol 959, Springer-Verlag, 1982, pp. 406–432. C. Scheiderer: Real and étale cohomology, Lecture Notes in Math., Vol. 1588, Springer-Verlag, 1994. N. Schwartz and J. Madden: Semi-algebraic function rings and reflectors of partially ordered rings, Lecture Notes in Math., Vol. 1712, Springer-Verlag, 1999. A. Seidenberg: Constructions in algebra, Trans. Amer. Math. Soc. 197 (1974) 273–313. M. Shiota: Nash manifolds, Lecture Notes in Math., Vol. 1269, Springer-Verlag, 1987.