Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

The Denef-Loeser zeta function is not a topological invariant

dc.contributor.authorArtal Bartolo, Enrique
dc.contributor.authorCassou-Noguès, Pierrette
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-20T16:59:54Z
dc.date.available2023-06-20T16:59:54Z
dc.date.issued2002-02
dc.descriptionDuring the development of this paper, the second author was the guest of the Department of Algebra at the University Complutense of Madrid, supported by a sabbatical grant from the MEC. She wishes to thanks the MEC for its support and the members of the Department of Algebra for their warm hospitality.
dc.description.abstractAn example is given which shows that the Denef–Loeser zeta function (usually called the topological zeta function) associated to a germ of a complex hypersurface singularity is not a topological invariant of the singularity. The idea is the following. Consider two germs of plane curves singularities with the same integral Seifert form but with different topological type and which have different topological zeta functions. Make a double suspension of these singularities (consider them in a 4-dimensional complex space). A theorem of M. Kervaire and J. Levine states that the topological type of these new hypersurface singularities is characterized by their integral Seifert form. Moreover the Seifert form of a suspension is equal (up to sign) to the original Seifert form. Hence these new singularities have the same topological type. By means of a double suspension formula the Denef–Loeser zeta functions are computed for the two 3-dimensional singularities and it is verified that they are not equal.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16722
dc.identifier.doi10.1112/S0024610701002848
dc.identifier.issn0024-6107
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=99099
dc.identifier.relatedurlhttp://journals.cambridge.org/action/login
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57596
dc.issue.number1
dc.journal.titleJournal of the London Mathematical Society. Second Series
dc.language.isoeng
dc.page.final54
dc.page.initial45
dc.publisherOxford University Press
dc.relation.projectIDPB97-0284-C02-02
dc.relation.projectIDPB97-0284-C02-01
dc.rights.accessRightsrestricted access
dc.subject.cdu517.5
dc.subject.keywordAdic Igusa Functions
dc.subject.keywordBernstein Polynomials
dc.subject.keywordCurves
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleThe Denef-Loeser zeta function is not a topological invariant
dc.typejournal article
dc.volume.number65
dcterms.referencesK. Altmann, Equisingular deformations of isolated 2-dimensional hypersurface singularities, Invent. Math. 88 (1987) 619-634. V. I. Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differentiable maps - Vol.II (Birkhäuser, Boston, MA, 1988). E. Artal Bartolo, Forme de Seifert des singularités de surface,C. R.Acad.Sci.Paris Sér. I Math. 313 (1991) 689-692. E. Artal Bartolo, P. Cassou-Noguès, I. Luengo and A. Melle-Hernández, Monodromy conjecture for some surfaces, Ann. Sci. École Norm. Sup. (4), to appear. J. Denef and F. Loeser, Caractéristiques d'Euler-Poincaré, fonctions zeta locales et modifications analytiques, J. Amer. Math. Soc. 5 (1992) 705-720. J. Denef and F. Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998) 505-537. J. Denef and F. Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani theorem, Duke Math. J. 99 (1999) 285-309. P. Du Bois and F. Michel, The integral Seifert form does not determine the topology of plane curve germs, J. Algebraic Geom. 3 (1994) 1-38. A. H. Durfee, Fibered knots and algebraic singularities, Topology 13 (1974) 47-59. F. Loeser, Fonctions d'Igusa p-adiques et polynomes de Bernstein, Amer. J. Math. 110 (1988) 1-21. F. Loeser, Fonctions d'Igusa p-adiques, polynomes de Bernstein, et polyedres de Newton, J. Reine Angew. Math. 412 (1990) 75-96. B. Rodrigues and W. Veys, Holomorphy of Igusa's and topological zeta functions for homogeneous polynomials', Pacic J. Math., to appear. K. Sakamoto, The Seifert matrices of Milnor berings dened by holomorphic functions, J. Math. Soc. Japan 26 (1974) 714-721. W. Veys, Determination of the poles of the topological zeta function for curves, Manuscripta Math.87 (1995) 435-448. W. Veys, Zeta functions for curves and log canonical models, Proc. London Math. Soc. (3) 74 (1997) 360-378. T. Yano, On the theory of b-functions, Publ. Res. Inst. Math. Sci. 14 (1978) 111-202.
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luengo14.pdf
Size:
202.13 KB
Format:
Adobe Portable Document Format

Collections