Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Cauchy problem and initial traces for a degenerate parabolic equation

dc.contributor.authorDi Benedetto, E.
dc.contributor.authorHerrero, Miguel A.
dc.date.accessioned2023-06-20T17:05:58Z
dc.date.available2023-06-20T17:05:58Z
dc.date.issued1989-07
dc.description.abstractThe authors study the Cauchy problem for the degenerate parabolic equation ut = div(|Du| p−2 Du)(p<2), and find sufficient conditions on the initial trace u0 (and in particular on its behaviour as |x|→∞) for existence of a solution in some strip RN × (0,T). Using a Harnack type inequality they show that these conditions are optimal in the case of nonnegative solutions. Uniqueness of solutions is shown if u0 belongs to L1loc(RN), but is left open in the case that u0 is merely a locally bounded measure. The results are closely related to papers by Aronson-Caffarelli, Benilan-Crandall-Pierre, and Dahlberg-Kenig about the porous medium equation ut = Δum. The proofs are different and allow one to generalize some of the above results to equations with variable coefficients.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipNSF
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17482
dc.identifier.doi10.1090/S0002-9947-1989-0962278-5
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/1989-314-01/S0002-9947-1989-0962278-5/S0002-9947-1989-0962278-5.pdf
dc.identifier.relatedurlhttp://www.ams.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57767
dc.issue.number1
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final224
dc.page.initial187
dc.publisherAmerican Mathematical Society
dc.relation.projectIDDMS-8502297
dc.relation.projectIDPB86-0112-C02-0
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu517.955
dc.subject.keywordCauchy problem
dc.subject.keywordporous medium equation
dc.subject.keywordexistence
dc.subject.keywordHarnack-type inequality
dc.subject.keywordUniqueness
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleOn the Cauchy problem and initial traces for a degenerate parabolic equation
dc.typejournal article
dc.volume.number314
dcterms.referencesN. D. Alikakos and R. Rostamian, Gradient estimates for degenerate diffusion equations II, Proc. Roy. Soc. Edinburgh Sect. A 91 (1981/82), 335-346. D. G. Aronson, Widder's inversion theorem and the initial distribution problem, SIAM J. Math. Anal. 12, 4 (1981), 639-651. D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc. 380 1 (1983), 351-366. Ph. Bènilan and M. G. Crandall, Regularizing effects of homogeneous evolution equations, MRC Tech. Rep. 2076, Madison, Wis., 1980. Ph. Bènilan, M. G. Crandall, and M. Pierre, Solutions of the porous medium equation in RN under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), 51-87. B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions of the porous medium equation, Comm. Partial Differential Equations 9 (1984), 409-437. E. DiBenedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13, 3 (1986), 487-535. E. DiBenedetto, Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations, Arch. Rational Mech. Anal. 100 (1988), 129-147. E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1-22. M. A. Herrero and J. L. Vázquez, Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math. 3 (1981), 113-127. A. S. Kalashnikov, Cauchy's problem in classes of increasing functions for certain quasi-linear degenerate parabolic equations of the second order, Differencial'nye Uravnenija 9 (1973), 682-691. A. S. Kalashnikov, On uniqueness conditions for the generalized solutions of the Cauchy problem for a class of quasi-linear degenerate parabolic equations, Differencial'nye Uravnenija 9 (1973), 2207-2212. O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc, Providence, R. I., 1968. A. N. Tychonov, Théorèmes d'unicité pour l'équation de la chaleur, Mat. Sb. 42 (1935), 199-216. D. V. Widder, Positive temperatures in an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85-95. G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Meh. 16 (1952), pp. 67-78. M. Porzio and P. Vincenzotti, A priori bounds for weak solutions of certain degenerate parabolic equations (to appear). Chen Ya-zhe and E. DiBenedetto, Boundary estimates for solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 395 (1989), 102-131.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero53.pdf
Size:
2.14 MB
Format:
Adobe Portable Document Format

Collections