Surgery on double knots and symmetries

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorBoileau, Michel
dc.contributor.authorGonzález Acuña, Francisco Javier
dc.date.accessioned2023-06-20T17:04:14Z
dc.date.available2023-06-20T17:04:14Z
dc.date.issued1987-01
dc.description.abstractW. Whitten conjectured [Pacific J. Math. 97 (1981), no. 1, 209–216] that no 3-manifold obtained by a nontrivial surgery on a double of a noninvertible knot is a 2-fold branched covering of S3. The authors give counterexamples to this conjecture and determine the exact range of validity of the conjecture. More generally, they consider closed, orientable 3-manifolds obtained by nontrivial Dehn surgery on a double of a non-strongly invertible knot and study the symmetries of such manifolds, i.e. the homeomorphisms of finite order on these manifolds. They show that, except for a finite number of surgeries, these manifolds admit no (nontrivial) symmetry.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSwiss National Fund for Scientific Research
dc.description.sponsorshipCAICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17172
dc.identifier.doi10.1007/BF01450747
dc.identifier.issn0025-5831
dc.identifier.officialurlhttp://www.springerlink.com/content/g541h3376w7517jx/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57722
dc.issue.number2
dc.journal.titleMathematische Annalen
dc.language.isoeng
dc.page.final340
dc.page.initial323
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordsymmetries of 3-manifolds
dc.subject.keywordDehn surgeries on a double of a noninvertible knot
dc.subject.keyword2-fold branched covers of S 3
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleSurgery on double knots and symmetries
dc.typejournal article
dc.volume.number276
dcterms.referencesBoileau, M., Siebenmann, L.: A planar classification of Pretzel knots and of Montesinos knots. Prepublication Orsay 1981 Bing, R., Martin, J.: Cubes with knotted holes. Trans. Am. Math. Soc.155, 217–231 (1971) Bioleau, M.: Inversibilité des noeuds de Montesinos. Thèse de 3ème cycle (1979). Publication d'Orsay 1981 Boileau, M.: Variétés de dimension 3 et symétries des enrelacs. Thèse de doctorat (Université de Genève, 1985) Bonnahon, F.: Involutions et fibrés de Seifert dans les variétés de dimension 3. Thèse de 3ème cycle, Orsay 1979 Bonahon, F., Siebenmann, L.: Algebraic knots. Monograph (to appear) Bonahon, F., Siebenmann, L.: Seifert 3-orbifolds and their role as natural crystalline parts of arbitrary compact irreducible 3-orbiofolds. Preprint Orsay 1983 Boileau, M., Zimmermann, B.: Symmetries of sufficiently complicated Montesinos links. Preprint 1986 Burde, G., Zieschang, H.: Knots. Berlin, New York: de Gruyter 1985 Cannon, J.W., Feustel, C.D.: Essential embeddings of annuli and Möbius bands in 2-manifolds. Trans. Am. Math. Soc.215, 219–239 (1976) Edmonds, A.L., Levingston, C.: Group actions on fibred 3-manifolds. Comment. Math. Helv.58, 529–542 (1983) Freedman, M., Hass, J., Scott, P.: Least area incompressible surfaces in 3-manifolds. Invent. Math.71, 609–642 (1983) Flapan, E.: Necessary and sufficient conditions for certain homology 3-spheres to have smoothZ p-actions. Pac. J. Math.117, 255–265 (1985) Giffen, C.: On transformations of the 3-sphere fixing a knot. Bull. Am. Math. Soc.73, 913–914 (1967) McA. Gordon, C., Litherland, R.: Incompressible surfaces in branched coverings. In: The Smith conjecture, p. 112. Morgan, J., Bass, H. (eds.) London, New York: Academic Press 1984 Gonzalez-Acuna, F.: Dehn's construction on knots. Bol. Soc. Mat. Mex. II. Ser.15, 58–79 (1970) Hartley, R.: Knots with free period. Can. J. Math.,33, 91–102 (1981) Hodgson, C.D.: Involutions and isotopies of lens spaces. Thesis, Melbourne 1981 Johannson, K.: Homotopy equivalence of 3-manifolds with boundaries. Lecture Notes Math. 761. Berlin, Heidelberrg, New York: Springer 1979 [JS] Jaco, W., Shalen, P.: Seifert fibred spaces in 3-manifolds. Memoirs A.M.S.220 (1979) Kawauchi, A.: The invertibility problem of amphicherial excellent knots. Proc. Jap. Acad.55, 399–402 (1979) Kim, P.K.: Involutions on Klein spacesM(p,q). Trans. Am. Math. Soc.268, 377–409 (1981) Kojima, S.: Bounding finite group acting on 3-manifolds. Math. Proc. Camb. Phil. Soc.96, 269–284 (1984) Meeks, W., Scott, P.: Finite group actions on 3-manifolds. Invent. Math.86, 287–346 (1986) Meeks, W., Yau, S.T.: Topology of 3-dimensional manifolds and the embedding problem in minimal surface theory. Ann. Math.112, 481–484 (1980) Montesinos, J.M.: Variedades de seifert que son recubridores ciclicos ramificados de dos hojas. Bol. Soc. Mat. Mex. II. Ser.18, 1–32 (1973) Montesinos, J.M.: Revêtements doubles ramifiés de noeuds, variétés de Seifert et diagrmamme de Heegaard. Prépublication Orsay 1979 Montesinos, J.M.: Surgery on links and double branched covers ofS 3 in Knots, groups, and manifolds. Ann. Math. Stud.84, 227–259 (1975) Montesinos, J.M., Whitten, W.: Constructions of two-fold branched coverings spaces. Preprint 1983 Myers, R.: Homology 3-spheres which admit no P.L. involutions. Pac. J. Math.94, 379–384 (1981) Oertel, U.: Closed incompressible surfaces in complements of star links. Pac. J. Math.111, 209–230 (1984) Schubert, H.: Knoten und Volringe. Acta Math.90, 132–286 (1953) Seifert, H.: Topologie dreidimensionaler gefaserter Räume. Acta Math.60, 147–238 (1933) Siebenmann, L.: On vanishing of the Rohlin invariant and non finitely amphicheiral homology 3-spheres. Proc. of Siegen Conference (1979). Lect. Notes Math.,788. Berlin, Heidelberg New York: Springer 1980 Bass, H., Morgan, J. (eds.): The Smith conjecture, 112. London, New York: Academic Press 1984 Thurston, W.P.: The geometry and topology of 3-manifolds. To be published by Princeton University Press Tollefson, J.L.: Involution ofS 1×S 2 and other 3-manifolds. Trans. Am. Math. Soc.123, 223–234 (1976) Tollefson, J.L.: Periodic homeomorphisms of 3-manifolds fibered overS 1. Trans. Am. Math. Soc.123, 223–234 (1976); Erratum, ibid. Tollefson, J.L.: Periodic homeomorphisms of 3-manifolds fibered overS 1. Trans. Am. Math. Soc.,243, 309–310 (1978) Tollefson, J.L.: Involutions of seifert fiber spaces. Pac. J. Math.74, 519–529 (1978) Trotter, H.F.: Non-invertible knots exist. Topology8, 275–280 (1964) Waldhausen, F.: Über Involutionen der 3-Sphäre., Topology8, 81–91 (1969) Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten, I and II. Invent. Math.3, 308–333 (1967);4, 87–117 (1967) Waldhausen, F.: Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten. Topology6, 505–517 (1967) Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math.87, 156–88 (1968) Whitten, W.: Inverting double knots. Pac. J. Math.97, 209–216 (1981) Zieschang, H.: Clasification of Montesinos knots. In: Topology, Proc. Leningrad 1983 (eds. L.D. Fadeev, A.A. Mal'cev) Lecture Notes Math. 1060, pp. 378–389. Berlin, Heidelberg, New York: Springer 1984 Zimmermann, B.: Das Nielsensche Realisierungsproblem für hinreichend große 3-Mannigfaltigkeiten. Math. Z.180, 349–359 (1982)
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos09.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format

Collections