Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Surgery on double knots and symmetries

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorBoileau, Michel
dc.contributor.authorGonzález Acuña, Francisco Javier
dc.date.accessioned2023-06-20T17:04:14Z
dc.date.available2023-06-20T17:04:14Z
dc.date.issued1987-01
dc.description.abstractW. Whitten conjectured [Pacific J. Math. 97 (1981), no. 1, 209–216] that no 3-manifold obtained by a nontrivial surgery on a double of a noninvertible knot is a 2-fold branched covering of S3. The authors give counterexamples to this conjecture and determine the exact range of validity of the conjecture. More generally, they consider closed, orientable 3-manifolds obtained by nontrivial Dehn surgery on a double of a non-strongly invertible knot and study the symmetries of such manifolds, i.e. the homeomorphisms of finite order on these manifolds. They show that, except for a finite number of surgeries, these manifolds admit no (nontrivial) symmetry.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSwiss National Fund for Scientific Research
dc.description.sponsorshipCAICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17172
dc.identifier.doi10.1007/BF01450747
dc.identifier.issn0025-5831
dc.identifier.officialurlhttp://www.springerlink.com/content/g541h3376w7517jx/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57722
dc.issue.number2
dc.journal.titleMathematische Annalen
dc.language.isoeng
dc.page.final340
dc.page.initial323
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordsymmetries of 3-manifolds
dc.subject.keywordDehn surgeries on a double of a noninvertible knot
dc.subject.keyword2-fold branched covers of S 3
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleSurgery on double knots and symmetries
dc.typejournal article
dc.volume.number276
dcterms.referencesBoileau, M., Siebenmann, L.: A planar classification of Pretzel knots and of Montesinos knots. Prepublication Orsay 1981 Bing, R., Martin, J.: Cubes with knotted holes. Trans. Am. Math. Soc.155, 217–231 (1971) Bioleau, M.: Inversibilité des noeuds de Montesinos. Thèse de 3ème cycle (1979). Publication d'Orsay 1981 Boileau, M.: Variétés de dimension 3 et symétries des enrelacs. Thèse de doctorat (Université de Genève, 1985) Bonnahon, F.: Involutions et fibrés de Seifert dans les variétés de dimension 3. Thèse de 3ème cycle, Orsay 1979 Bonahon, F., Siebenmann, L.: Algebraic knots. Monograph (to appear) Bonahon, F., Siebenmann, L.: Seifert 3-orbifolds and their role as natural crystalline parts of arbitrary compact irreducible 3-orbiofolds. Preprint Orsay 1983 Boileau, M., Zimmermann, B.: Symmetries of sufficiently complicated Montesinos links. Preprint 1986 Burde, G., Zieschang, H.: Knots. Berlin, New York: de Gruyter 1985 Cannon, J.W., Feustel, C.D.: Essential embeddings of annuli and Möbius bands in 2-manifolds. Trans. Am. Math. Soc.215, 219–239 (1976) Edmonds, A.L., Levingston, C.: Group actions on fibred 3-manifolds. Comment. Math. Helv.58, 529–542 (1983) Freedman, M., Hass, J., Scott, P.: Least area incompressible surfaces in 3-manifolds. Invent. Math.71, 609–642 (1983) Flapan, E.: Necessary and sufficient conditions for certain homology 3-spheres to have smoothZ p-actions. Pac. J. Math.117, 255–265 (1985) Giffen, C.: On transformations of the 3-sphere fixing a knot. Bull. Am. Math. Soc.73, 913–914 (1967) McA. Gordon, C., Litherland, R.: Incompressible surfaces in branched coverings. In: The Smith conjecture, p. 112. Morgan, J., Bass, H. (eds.) London, New York: Academic Press 1984 Gonzalez-Acuna, F.: Dehn's construction on knots. Bol. Soc. Mat. Mex. II. Ser.15, 58–79 (1970) Hartley, R.: Knots with free period. Can. J. Math.,33, 91–102 (1981) Hodgson, C.D.: Involutions and isotopies of lens spaces. Thesis, Melbourne 1981 Johannson, K.: Homotopy equivalence of 3-manifolds with boundaries. Lecture Notes Math. 761. Berlin, Heidelberrg, New York: Springer 1979 [JS] Jaco, W., Shalen, P.: Seifert fibred spaces in 3-manifolds. Memoirs A.M.S.220 (1979) Kawauchi, A.: The invertibility problem of amphicherial excellent knots. Proc. Jap. Acad.55, 399–402 (1979) Kim, P.K.: Involutions on Klein spacesM(p,q). Trans. Am. Math. Soc.268, 377–409 (1981) Kojima, S.: Bounding finite group acting on 3-manifolds. Math. Proc. Camb. Phil. Soc.96, 269–284 (1984) Meeks, W., Scott, P.: Finite group actions on 3-manifolds. Invent. Math.86, 287–346 (1986) Meeks, W., Yau, S.T.: Topology of 3-dimensional manifolds and the embedding problem in minimal surface theory. Ann. Math.112, 481–484 (1980) Montesinos, J.M.: Variedades de seifert que son recubridores ciclicos ramificados de dos hojas. Bol. Soc. Mat. Mex. II. Ser.18, 1–32 (1973) Montesinos, J.M.: Revêtements doubles ramifiés de noeuds, variétés de Seifert et diagrmamme de Heegaard. Prépublication Orsay 1979 Montesinos, J.M.: Surgery on links and double branched covers ofS 3 in Knots, groups, and manifolds. Ann. Math. Stud.84, 227–259 (1975) Montesinos, J.M., Whitten, W.: Constructions of two-fold branched coverings spaces. Preprint 1983 Myers, R.: Homology 3-spheres which admit no P.L. involutions. Pac. J. Math.94, 379–384 (1981) Oertel, U.: Closed incompressible surfaces in complements of star links. Pac. J. Math.111, 209–230 (1984) Schubert, H.: Knoten und Volringe. Acta Math.90, 132–286 (1953) Seifert, H.: Topologie dreidimensionaler gefaserter Räume. Acta Math.60, 147–238 (1933) Siebenmann, L.: On vanishing of the Rohlin invariant and non finitely amphicheiral homology 3-spheres. Proc. of Siegen Conference (1979). Lect. Notes Math.,788. Berlin, Heidelberg New York: Springer 1980 Bass, H., Morgan, J. (eds.): The Smith conjecture, 112. London, New York: Academic Press 1984 Thurston, W.P.: The geometry and topology of 3-manifolds. To be published by Princeton University Press Tollefson, J.L.: Involution ofS 1×S 2 and other 3-manifolds. Trans. Am. Math. Soc.123, 223–234 (1976) Tollefson, J.L.: Periodic homeomorphisms of 3-manifolds fibered overS 1. Trans. Am. Math. Soc.123, 223–234 (1976); Erratum, ibid. Tollefson, J.L.: Periodic homeomorphisms of 3-manifolds fibered overS 1. Trans. Am. Math. Soc.,243, 309–310 (1978) Tollefson, J.L.: Involutions of seifert fiber spaces. Pac. J. Math.74, 519–529 (1978) Trotter, H.F.: Non-invertible knots exist. Topology8, 275–280 (1964) Waldhausen, F.: Über Involutionen der 3-Sphäre., Topology8, 81–91 (1969) Waldhausen, F.: Eine Klasse von 3-dimensionalen Mannigfaltigkeiten, I and II. Invent. Math.3, 308–333 (1967);4, 87–117 (1967) Waldhausen, F.: Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten. Topology6, 505–517 (1967) Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math.87, 156–88 (1968) Whitten, W.: Inverting double knots. Pac. J. Math.97, 209–216 (1981) Zieschang, H.: Clasification of Montesinos knots. In: Topology, Proc. Leningrad 1983 (eds. L.D. Fadeev, A.A. Mal'cev) Lecture Notes Math. 1060, pp. 378–389. Berlin, Heidelberg, New York: Springer 1984 Zimmermann, B.: Das Nielsensche Realisierungsproblem für hinreichend große 3-Mannigfaltigkeiten. Math. Z.180, 349–359 (1982)
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos09.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format

Collections