LFC bumps on separable Banach spaces
dc.contributor.author | Jiménez Sevilla, María Del Mar | |
dc.contributor.author | Sánchez González, Luis | |
dc.date.accessioned | 2023-06-20T00:06:44Z | |
dc.date.available | 2023-06-20T00:06:44Z | |
dc.date.issued | 2010 | |
dc.description.abstract | In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | DGS | |
dc.description.sponsorship | UMC- BSCH | |
dc.description.sponsorship | MEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/13816 | |
dc.identifier.doi | 10.1016/j.jmaa.2009.10.049 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/journal/0022247X | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/41996 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.language.iso | eng | |
dc.page.final | 319 | |
dc.page.initial | 315 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM 2006-03531 | |
dc.relation.projectID | GR58/08-910626 | |
dc.relation.projectID | AP2007-00868 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Smooth bump functions | |
dc.subject.keyword | Locally depending on finitely many coordinates | |
dc.subject.keyword | Polyhedral banach spaces | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | LFC bumps on separable Banach spaces | |
dc.type | journal article | |
dc.volume.number | 365, N | |
dcterms.references | [1] R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877-898. [2] M. Fabian, P. Habala, P. Hájek, V.M. Santalucía, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Math. vol. 8, Springer-Verlag, New York, (2001). [3] M. Fabian and V. Zizler, A note on bump functions that locally depend on finitely many coordinates, Bull. Austral. Math. Soc 56 (3) (1997), 447-451. [4] V. P. Fonf, Polyhedral Banach spaces, Math. Notes Acad. Sci. USSR 30 (1981), 809-813. [5] V. P. Fonf, Three characterizations of polyhedral Banach spaces, Ukrainian Math. J. 42 (9) (1990), 1145-1148. [6] P. Hájek, Smooth norms that depend locally on finitely many coordinates, Proc. Amer. Math. Soc. 123 (12) (1995), 3817-3821. [7] P. Hájek and V. Zizler, Functions locally dependent on finitely many coordinates, R. Acad. Cien. Serie A. Mat. 100 (1-2) (2006), 147-154. [8] P. Hájek and M. Johanis, Smoothing of bump functions, J. Math. Anal. Appl. 338 (2008), 1131-1139. [9] P. Hájek and M. Johanis, Polyhedrality in Orlicz Spaces, Israel J. Math. 168 (2008), 167-188. [10] R. G. Haydon, Smooth functions and partitions of unity on certains Banach spaces, Quart. J. Math. Oxford. Ser. 47 (188) (1996), 455-468. [11] M. Johanis, Locally at Banach spaces, Czechoslovak Math. J. 59 (134) (2009), no. 1, 273{284. [12] W. B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, vol. 1, Elsevier, 2001. [13] V. L. Klee, Polyhedral sections of convex bodies, Acta. Math. 103 (1969), 243-267. [14] D. H. Leung, Some isomorphically polyhedral Orlicz sequence spaces, Israel J. Math. 87 (1994), 117-128. [15] J. Pechanec, J. H. M. Whitfield and V. Zizler, Norms locally dependent on finitely many coordinates, An. Acad. Brasil. Ciênc. 53 (3) (1981), 415-417. [16] H. Torunczyk, Smooth partitions of unity on some nonseparable Banach spaces, Studia Math. 46 (1973), 43-51. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 36c2a4e7-ac6d-450d-b64c-692a94ff6361 | |
relation.isAuthorOfPublication.latestForDiscovery | 36c2a4e7-ac6d-450d-b64c-692a94ff6361 |
Download
Original bundle
1 - 1 of 1