Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Finite Difference Method for the Variational p-Laplacian

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer
Citations
Google Scholar

Citation

Abstract

We propose a new monotone finite difference discretization for the variational p-Laplace operator, pu = div(|∇u|p−2∇u), and present a convergent numerical scheme for related Dirichlet problems. The resulting nonlinear system is solved using two different methods: one based on Newton-Raphson and one explicit method. Finally, we exhibit some numerical simulations supporting our theoretical results. To the best of our knowledge, this is the first monotone finite difference discretization of the variational p-Laplacian and also the first time that nonhomogeneous problems for this operator can be treated numerically with a finite difference scheme.

Research Projects

Organizational Units

Journal Issue

Description

CRUE-CSIC (Acuerdos Transformativos 2021)

Keywords

Collections