Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Exploring the performance and portability of the k-means algorithm on SYCL across CPU and GPU architectures

dc.contributor.authorGarcía Sánchez, Carlos
dc.contributor.authorEl Faqir El Rhazoui, Youssef
dc.date.accessioned2024-05-16T15:17:08Z
dc.date.available2024-05-16T15:17:08Z
dc.date.issued2023-05-15
dc.description2023 Acuerdos transformativos CRUE
dc.description.abstractThe aim of SYCL is to reduce the gap between the performance and code portability of the main accelerators used in HPC, such as multi-vendor CPUs, GPUs, and FPGAs. To evaluate SYCL’s performance portability, this paper uses the k-means algorithm as a case study. The k-means algorithm is simple to code but can be complex to optimize. In this research, we compare our developed SYCL version with the most efficient implementations of CUDA and OpenMP. Our resulting SYCL code can potentially run on multi-vendor CPUs and GPUs. Additionally, we have created a hand-tuned SYCL variation that is optimized for specific device architectures (CPU, NVIDIA GPU, and Intel GPU) to evaluate the performance difference between a standard version and an optimized one. The results show that SYCL outperforms Intel GPUs and CPUs compared to the state-of-the-art He-Vialle version, while on NVIDIA GPUs SYCL offers equivalent performance compared to its native CUDA implementation.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1007/s11227-023-05373-2
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s11227-023-05373-2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104112
dc.journal.titleThe Journal of Supercomputing
dc.language.isoeng
dc.page.final18506
dc.page.initial18480
dc.publisherSpringer Nature
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordK-means
dc.subject.keywordSYCL
dc.subject.keywordOneAPI
dc.subject.keywordCUDA
dc.subject.keywordGPU
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleExploring the performance and portability of the k-means algorithm on SYCL across CPU and GPU architectures
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number79
dspace.entity.typePublication
relation.isAuthorOfPublicationd04764e1-9d18-42ae-a9e7-c55f9bd50934
relation.isAuthorOfPublication4312563b-64dd-471a-a89a-0af033cbe275
relation.isAuthorOfPublication.latestForDiscoveryd04764e1-9d18-42ae-a9e7-c55f9bd50934

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
exploring.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format

Collections