Increasing applicability of slow light in molecular
aggregate nanofilms with two-exciton dynamics
dc.contributor.author | Díaz García, Elena | |
dc.contributor.author | Cabrera Granado, Eduardo | |
dc.contributor.author | Gómez Calderón, Óscar | |
dc.date.accessioned | 2023-06-18T05:41:56Z | |
dc.date.available | 2023-06-18T05:41:56Z | |
dc.date.issued | 2016-05-25 | |
dc.description | © 2016 Optical Society of America. Funding. MINECO (MAT2013-46308, FIS2013- 41709-P). | |
dc.description.abstract | We study the slow-light performance in the presence of exciton – exciton interaction in films of linear molecular aggregates at the nanometer scale. In particular, we consider a four-level model to describe the creation/annihilation of two-exciton states that are relevant for high-intensity fields. Numerical simulations show delays comparable to those obtained for longer propagation distances in other media. Two-exciton dynamics could lead to larger fractional delays, even in presence of disorder, in comparison to the two-level approximation. We conclude that slow-light performance is a robust phenomenon in these systems under the increasing complexity of the two-exciton dynamics. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/40860 | |
dc.identifier.doi | 10.1364/OL.41.002569 | |
dc.identifier.issn | 0146-9592 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/OL.41.002569 | |
dc.identifier.relatedurl | https://www.osapublishing.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/23081 | |
dc.issue.number | 11 | |
dc.journal.title | Optics letters | |
dc.language.iso | eng | |
dc.page.final | 2572 | |
dc.page.initial | 2569 | |
dc.relation.projectID | MAT2013-46308 | |
dc.relation.projectID | FIS2013- 41709-P | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.cdu | 621.38 | |
dc.subject.cdu | 537.8 | |
dc.subject.cdu | 004.42 | |
dc.subject.keyword | Slow-light | |
dc.subject.keyword | Molecular aggregates | |
dc.subject.keyword | Exciton dynamics | |
dc.subject.ucm | Física (Física) | |
dc.subject.ucm | Electromagnetismo | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.ucm | Física de materiales | |
dc.subject.ucm | Física del estado sólido | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.ucm | Programación de ordenadores (Física) | |
dc.subject.ucm | Química física (Física) | |
dc.subject.unesco | 22 Física | |
dc.subject.unesco | 2202 Electromagnetismo | |
dc.subject.unesco | 2211 Física del Estado Sólido | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.subject.unesco | 2210 Química Física | |
dc.title | Increasing applicability of slow light in molecular aggregate nanofilms with two-exciton dynamics | |
dc.type | journal article | |
dc.volume.number | 41 | |
dcterms.references | 1. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005). 2. K.-H. Kim, A. Husakou, and J. Herrmann, Opt. Express 20, 25790 (2012). 3. S. Ek, P. Lunnemann, Y. Chen, E. Semenova, K. Yvind, and J. Mork, Nat. Commun.5, 5039 (2014). 4. T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, Sci. Technol. Adv. Mater.15, 024602 (2014). 5. E. Cabrera-Granado, E. Díaz, and O. G. Calderón, Phys. Rev. Lett. 107, 013901 (2011). 6. J. Knoester, Int. J. Photoenergy 2006, 61364 (2006). 7. S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, Nanophotonics 2, 21 (2013). 8. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 98, 6564 (1993). 9. H. Glaeske, V. A. Malyshev, and K.-H. Feller, Phys. Rev. A 65, 033821 (2002). 10. F. Herrera, B. Peropadre, L. A. Pachon, S. K. Saikin, and A. Aspuru-Guzik, J. Phys. Chem. Lett.5, 3708 (2014). 11. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, Phys. Rev. Lett. 114, 157401 (2015). 12. E. C. Jarque and V. A. Malyshev, J. Chem. Phys. 115, 4275 (2001). 13. H. Fidder, J. Knoester, and D. A. Wiersma, Chem. Phys. Lett. 171, 529 (1990). 14. K. Minoshima, M. Taiji, K. Misawa, and T. Kobayashi, Chem. Phys. Lett. 218, 67 (1994). 15. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, Phys. Rev. A 24, 411 (1981). 16. H. Stiel, S. Daehne, and K. Teuchner, J. Lumin. 39, 351 (1988). 17. R. V. Markov, Z. M. Ivanova, A. I. Plekhanov, N. A. Orlova, and V. V. Shelkovnikov, Quantum Electron. 31, 1063 (2001) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 | |
relation.isAuthorOfPublication | f63bf5d8-27d6-4a43-876d-a41e00c683bc | |
relation.isAuthorOfPublication | e3951eb6-c03f-4cc1-b643-8450fedd1f67 | |
relation.isAuthorOfPublication.latestForDiscovery | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- OL_41_2569_(2016)_eprints.pdf
- Size:
- 569.9 KB
- Format:
- Adobe Portable Document Format