Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Increasing applicability of slow light in molecular aggregate nanofilms with two-exciton dynamics

dc.contributor.authorDíaz García, Elena
dc.contributor.authorCabrera Granado, Eduardo
dc.contributor.authorGómez Calderón, Óscar
dc.date.accessioned2023-06-18T05:41:56Z
dc.date.available2023-06-18T05:41:56Z
dc.date.issued2016-05-25
dc.description© 2016 Optical Society of America. Funding. MINECO (MAT2013-46308, FIS2013- 41709-P).
dc.description.abstractWe study the slow-light performance in the presence of exciton – exciton interaction in films of linear molecular aggregates at the nanometer scale. In particular, we consider a four-level model to describe the creation/annihilation of two-exciton states that are relevant for high-intensity fields. Numerical simulations show delays comparable to those obtained for longer propagation distances in other media. Two-exciton dynamics could lead to larger fractional delays, even in presence of disorder, in comparison to the two-level approximation. We conclude that slow-light performance is a robust phenomenon in these systems under the increasing complexity of the two-exciton dynamics.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40860
dc.identifier.doi10.1364/OL.41.002569
dc.identifier.issn0146-9592
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OL.41.002569
dc.identifier.relatedurlhttps://www.osapublishing.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23081
dc.issue.number11
dc.journal.titleOptics letters
dc.language.isoeng
dc.page.final2572
dc.page.initial2569
dc.relation.projectIDMAT2013-46308
dc.relation.projectIDFIS2013- 41709-P
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.cdu621.38
dc.subject.cdu537.8
dc.subject.cdu004.42
dc.subject.keywordSlow-light
dc.subject.keywordMolecular aggregates
dc.subject.keywordExciton dynamics
dc.subject.ucmFísica (Física)
dc.subject.ucmElectromagnetismo
dc.subject.ucmElectrónica (Física)
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.ucmÓptica (Física)
dc.subject.ucmProgramación de ordenadores (Física)
dc.subject.ucmQuímica física (Física)
dc.subject.unesco22 Física
dc.subject.unesco2202 Electromagnetismo
dc.subject.unesco2211 Física del Estado Sólido
dc.subject.unesco2209.19 Óptica Física
dc.subject.unesco2210 Química Física
dc.titleIncreasing applicability of slow light in molecular aggregate nanofilms with two-exciton dynamics
dc.typejournal article
dc.volume.number41
dcterms.references1. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005). 2. K.-H. Kim, A. Husakou, and J. Herrmann, Opt. Express 20, 25790 (2012). 3. S. Ek, P. Lunnemann, Y. Chen, E. Semenova, K. Yvind, and J. Mork, Nat. Commun.5, 5039 (2014). 4. T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, Sci. Technol. Adv. Mater.15, 024602 (2014). 5. E. Cabrera-Granado, E. Díaz, and O. G. Calderón, Phys. Rev. Lett. 107, 013901 (2011). 6. J. Knoester, Int. J. Photoenergy 2006, 61364 (2006). 7. S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, Nanophotonics 2, 21 (2013). 8. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 98, 6564 (1993). 9. H. Glaeske, V. A. Malyshev, and K.-H. Feller, Phys. Rev. A 65, 033821 (2002). 10. F. Herrera, B. Peropadre, L. A. Pachon, S. K. Saikin, and A. Aspuru-Guzik, J. Phys. Chem. Lett.5, 3708 (2014). 11. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, Phys. Rev. Lett. 114, 157401 (2015). 12. E. C. Jarque and V. A. Malyshev, J. Chem. Phys. 115, 4275 (2001). 13. H. Fidder, J. Knoester, and D. A. Wiersma, Chem. Phys. Lett. 171, 529 (1990). 14. K. Minoshima, M. Taiji, K. Misawa, and T. Kobayashi, Chem. Phys. Lett. 218, 67 (1994). 15. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, Phys. Rev. A 24, 411 (1981). 16. H. Stiel, S. Daehne, and K. Teuchner, J. Lumin. 39, 351 (1988). 17. R. V. Markov, Z. M. Ivanova, A. I. Plekhanov, N. A. Orlova, and V. V. Shelkovnikov, Quantum Electron. 31, 1063 (2001)
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublicationf63bf5d8-27d6-4a43-876d-a41e00c683bc
relation.isAuthorOfPublicatione3951eb6-c03f-4cc1-b643-8450fedd1f67
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OL_41_2569_(2016)_eprints.pdf
Size:
569.9 KB
Format:
Adobe Portable Document Format

Collections