Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Seiberg-Witten maps for SO(1,3) gauge invariance and deformations of gravity

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorMarculescu, S
dc.date.accessioned2023-06-20T03:38:38Z
dc.date.available2023-06-20T03:38:38Z
dc.date.issued2009-01
dc.description© 2009 The American Physical Society. The authors are grateful to MEC and UCM-CAM, Spain for partial support through Grants No. FIS2005-02309, No. FPA2008-04906, and No. CCG07-UCM/ESP-2910.
dc.description.abstractA family of diffeomorphism-invariant Seiberg-Witten deformations of gravity is constructed. In a first step Seiberg-Witten maps for an SO(1,3) gauge symmetry are obtained for constant deformation parameters. This includes maps for the vierbein, the spin connection, and the Einstein-Hilbert Lagrangian. In a second step the vierbein postulate is imposed in normal coordinates and the deformation parameters are identified with the components theta(mu nu)(x) of a covariantly constant bivector. This procedure gives for the classical action a power series in the bivector components which by construction is diffeomorphism invariant. Explicit contributions up to second order are obtained. For completeness a cosmological constant term is included in the analysis. Covariant constancy of theta(mu nu)(x), together with the field equations, imply that, up to second order, only four dimensional metrics which are direct sums of two two dimensional metrics are admissible, the two-dimensional curvatures being expressed in terms of theta(mu nu). These four-dimensional metrics can be viewed as a family of deformed emergent gravities.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipUCM-CAM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24825
dc.identifier.doi10.1103/PhysRevD.79.025004
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.79.025004
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44137
dc.issue.number2
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherThe American Physical Society
dc.relation.projectIDFIS2005-02309
dc.relation.projectIDFPA2008-04906
dc.relation.projectIDCCG07-UCM/ESP-2910
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordNoncommutative Gravity
dc.subject.keywordNon-Commutativity
dc.subject.keywordStandard Model
dc.subject.keywordD-Brane
dc.subject.keywordSpaces
dc.subject.keywordField
dc.subject.keywordTime
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleSeiberg-Witten maps for SO(1,3) gauge invariance and deformations of gravity
dc.typejournal article
dc.volume.number79
dcterms.references[1] S. Doplicher, K. Fredenhagen, and J. Roberts, Commun. Math. Phys. 172, 187 (1995). [2] R. J. Szabo, Classical Quantum Gravity B23, R199 (2006). [3] A. H. Chamseddine, Phys. Lett. B 504, 33 (2001); J.W. Moffat, Phys. Lett. B 491, 345 (2000); H. García Compeán, O. Obregón, C. Ramírez, and M. Sabido, Phys. Rev. D 68, 044015 (2003); R. Banerjee, P. Mukherjee, and S. Samanta, Phys. Rev. D 75, 125020 (2007). [4] X. Calmet and A. Kobakhidze, Phys. Rev. D 72, 045010 (2005); 74, 047702 (2006); P. Mukherjee and A. Saha, Phys. Rev. D 74, 027702 (2006). [5] S. Estrada Jiménez, H. García Compeán, O. Obregón, and C. Ramírez, Phys. Rev. D 78, 124008 (2008). [6] P. Aschieri, C. Blohman, M. Dimitrievic´, F. Meyer, P. Schupp, and J. Wess, Classical Quantum Gravity 22, 3511 (2005). [7] L. Alvarez-Gaumé, F. Meyer, and M. A. Vásquez Mozo, Nucl. Phys. B753, 92 (2006). [8] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999) 032. [9] C. S. Chu and P. M. Ho, Nucl. Phys. B550, 151 (1999); B636, 141 (2002); L. Dolan and C. R. Nappi, Phys. Lett. B 551, 369 (2003); G. Horcajada and F. Ruiz Ruiz, Nucl. Phys. B799, 110 (2008). [10] V. Schomerus, J. High Energy Phys. 06 (1999) 030. [11] T.W. B. Kibble, J. Math. Phys. (N.Y.) 2, 212 (1961); H. Weyl, Z. Phys. 56, 330 (1929); R. Utiyama, Phys. Rev. 101, 1597 (1956). [12] H. Stephani, D. Kramer, M. Maccallum, C. Honselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, England, 2003). [13] D. Brace, B. L. Cerchiai, A. Pasqua, U. Varadarajan, and B. Zumino, J. High Energy Phys. 06 (2001) 047; T. Asakawa and I. Kishimoto, J. High Energy Phys. 11 (1999) 024. [14] E. Harikumar and V. O. Rivelles, Classical Quantum Gravity B23, 7551 (2006). [15] V. Gayral, J. M. Gracia-Bondı´a, and F. Ruiz Ruiz, Nucl. Phys. B727, 513 (2005). [16] H. Steinacker, J. High Energy Phys. 12 (2007) 049. [17] G. Barnich, F. Brandt, and M. Grigoriev, J. High Energy Phys. 08 (2002) 023. [18] In both solutions we have taken the same Seiberg Witten map ^_ for the ghost field given by (4.24), because it does not enter ^L and, being a ghost field, it is expected to be a gauge-fixing artifact. [19] A. H. Chamseddine, Commun. Math. Phys. 218, 283 (2001). [20] F. Brandt, C. P. Martín, and F. Ruiz Ruiz, J. High Energy Phys. 07 (2003) 068. [21] B. Jurˇco, S. Schraml, P. Schupp, and J. Wess, Eur. Phys. J. C 17, 521 (2000); X. Calmet, B. Jurˇco, P. Schupp, J. Wess, and M. Wohlgenannt, Eur. Phys. J. C 23, 363 (2002); M. Chaichian, P. Presˇnajder, M.M. Sheikh Jabbari, and A. Tureanu, Eur. Phys. J. C 29, 413 (2003). [22] S. Marculescu and F. Ruiz Ruiz, Phys. Rev. D 74, 105004 (2006).
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RuizFR03.pdf
Size:
315.14 KB
Format:
Adobe Portable Document Format

Collections