Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Robust SVM Classification with lp-Quasi-Norm Feature Selection

dc.contributor.authorCarrasco, Miguel
dc.contributor.authorLópez, Julio
dc.contributor.authorIvorra, Benjamín Pierre Paul
dc.contributor.authorMarechal, Matthieu
dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.date.accessioned2025-02-14T18:02:50Z
dc.date.available2025-02-14T18:02:50Z
dc.date.issued2025
dc.description.abstractThis study presents a robust classification framework with embedded feature selection to tackle challenges in high-dimensional datasets. By utilizing lp-quasi-norms (p in (0,1)), the framework achieves sparse classifiers that are robust to random input perturbations. It extends existing models like MEMPM and CD-LeMa to their lp-regularized versions, with traditional l2-regularizations serving as benchmarks to evaluate trade-offs between sparsity and predictive performance. To address computational challenges, a novel Diagonal Two-Step Algorithm is introduced, combining convex approximations and iterative parameter updates for efficient and stable optimization. The proposed methods are validated on benchmark datasets using four classification models and two feature elimination techniques: Direct Feature Elimination and Recursive Feature Elimination. Results demonstrate the influence of the norm parameter p on classification balance accuracy, feature selection, robustness, and computational efficiency. This comprehensive framework provides practical tools and insights for designing efficient and robust classifiers for high-dimensional applications.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.statussubmitted
dc.identifier.urihttps://hdl.handle.net/20.500.14352/118104
dc.language.isoeng
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106337GB-I00/ES/MODELIZACION, SIMULACION NUMERICA Y OPTIMIZACION PARA VARIOS PROBLEMAS DE INTERES GENERAL/
dc.relation.projectIDPID2023-146754NB-I00
dc.relation.projectIDPE501087025-2024-PROCIENCIA
dc.relation.projectID23-MATH-09
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordSupport Vector Machines
dc.subject.keywordLP-quasi-norm
dc.subject.keywordDirect Feature Elimination
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleRobust SVM Classification with lp-Quasi-Norm Feature Selection
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication6d5e1204-9b8a-40f4-b149-02d32e0bbed2
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery6d5e1204-9b8a-40f4-b149-02d32e0bbed2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper_LpSOC_nl_Preprint.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format

Collections