Symmetries of Riemann surfaces on which PSL(2,q) acts as a Hurwitz automorphism group
| dc.contributor.author | Broughton, Allen | |
| dc.contributor.author | Bujalance, Emilio | |
| dc.contributor.author | Costa, António | |
| dc.contributor.author | Gamboa Mutuberria, José Manuel | |
| dc.contributor.author | Gromadzki, Grzegorz | |
| dc.date.accessioned | 2023-06-20T16:52:34Z | |
| dc.date.available | 2023-06-20T16:52:34Z | |
| dc.date.issued | 1996 | |
| dc.description.abstract | Let X be a compact Riemann surface and Aut(X) be its automorphism group. An automorphism of order 2 reversing the orientation is called a symmetry. The authors together with D. Singerman have been working on symmetries of Riemann surfaces in the last decade. In this paper, the symmetry type St(X) of X is defined as an unordered list of species of conjugacy classes of symmetries of X, and for a class of particular surfaces, St(X) is found. This class consists of Riemann surfaces on which PSL(2, q) acts as a Hurwitz group. An algorithm to calculate the symmetry type of this class is provided. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/15416 | |
| dc.identifier.citation | Broughton, S. A., et al. «Symmetries of Riemann Surfaces on Which PSL(2, q) Acts as a Hurwitz Automorphism Group». Journal of Pure and Applied Algebra, vol. 106, n.o 2, enero de 1996, pp. 113-26. https://doi.org/10.1016/0022-4049(94)00065-4. | |
| dc.identifier.doi | 10.1016/0022-4049(94)00065-4 | |
| dc.identifier.issn | 0022-4049 | |
| dc.identifier.officialurl | https://doi.org/10.1016/0022-4049(94)00065-4 | |
| dc.identifier.relatedurl | http://www.sciencedirect.com | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/57297 | |
| dc.issue.number | 2 | |
| dc.journal.title | Journal Of Pure And Applied Algebra | |
| dc.page.final | 126 | |
| dc.page.initial | 113 | |
| dc.publisher | Elsevier | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 511.174 | |
| dc.subject.keyword | Hurwitz group | |
| dc.subject.keyword | Compact Riemann surface | |
| dc.subject.keyword | Automorphism group | |
| dc.subject.keyword | Symmetry | |
| dc.subject.ucm | Funciones (Matemáticas) | |
| dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
| dc.title | Symmetries of Riemann surfaces on which PSL(2,q) acts as a Hurwitz automorphism group | |
| dc.type | journal article | |
| dc.volume.number | 106 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8fcb811a-8d76-49a2-af34-85951d7f3fa5 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Symmetries_of_Riemann_surfaces.pdf
- Size:
- 858.85 KB
- Format:
- Adobe Portable Document Format

