Invariant Complex Structures on Tangent and Cotangent Lie Groups of Dimension Six
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.contributor.author | Ovando, Gabriela P. | |
dc.date.accessioned | 2023-06-20T03:31:53Z | |
dc.date.available | 2023-06-20T03:31:53Z | |
dc.date.issued | 2012 | |
dc.description.abstract | This paper deals with left invariant complex structures on simply connected Lie groups, the Lie algebra of which is of the type Th D hË V, where is either the adjoint or the coadjoint representation. The main topic is the existence question of complex structures on Th for h a three dimensional real Lie algebra. First it was proposed the study of complex structures J satisfying the constraint Jh D V. Whenever is the adjoint representation this kind of complex structures are associated to non-singular derivations of h. This fact allows different kinds of applications. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CONICET, ANPCyT, SECyT-UNC, SCyT-UNR | |
dc.description.sponsorship | MICINN | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20735 | |
dc.identifier.issn | 0030-6126 | |
dc.identifier.officialurl | http://ir.library.osaka-u.ac.jp/dspace/bitstream/11094/8992/1/ojm49_02_489.pdf | |
dc.identifier.relatedurl | http://ir.library.osaka-u.ac.jp/dspace/ | |
dc.identifier.relatedurl | http://hdl.handle.net/11094/8992 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43741 | |
dc.issue.number | 2 | |
dc.journal.title | Osaka Journal of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 513 | |
dc.page.initial | 489 | |
dc.publisher | Osaka University | |
dc.relation.projectID | MTM2010-18556 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 530.145 | |
dc.subject.keyword | Complex structures | |
dc.subject.keyword | Lie algebras | |
dc.subject.keyword | symplectic structures | |
dc.subject.ucm | Teoría de los quanta | |
dc.subject.unesco | 2210.23 Teoría Cuántica | |
dc.title | Invariant Complex Structures on Tangent and Cotangent Lie Groups of Dimension Six | |
dc.type | journal article | |
dc.volume.number | 49 | |
dcterms.references | A. Andrada, M.L. Barberis and I. Dotti: Classification of abelian complex structures on 6-dimensional Lie algebras, J. Lond. Math. Soc. (2) 83 (2011), 232–255. L.C. de Andrés, M.L. Barberis, I. Dotti and M. Fernández: Hermitian structures on cotangent bundles of four dimensional solvable Lie groups, Osaka J. Math. 44 (2007), 765–793. A. Andrada, M.L. Barberis and G. Ovando: Lie bialgebras of complex type and associated Poisson Lie groups, J. Geom. Phys. 58 (2008), 1310–1328. M.L. Barberis and I.G. Dotti: Complex structures on affine motion groups, Q.J. Math. 55 (2004), 375–389. M.L. Barberis, I.G. Dotti Miatello and R.J. Miatello: On certain locally homogeneous Clifford manifolds, Ann. Global Anal. Geom. 13 (1995), 289–301. M.N. Boyom: Variétés symplectiques affines,Manuscripta Math. 64 (1989), 1–33. R. Cleyton, J. Lauret and Y.S. Poon: Weak mirror symmetry of Lie algebras, J. Symplectic Geom. 8 (2010), 37–55. R. Cleyton, G. Ovando and Y.S. Poon: Weak mirror symmetry of complex symplectic Lie algebras, J. Geom. Phys. 61 (2011), 1553–1563. L.A. Cordero, M. Fernández, A. Gray and L. Ugarte: Nilpotent complex structures on compact nilmanifolds, Rend. Circ. Mat. Palermo (2) Suppl. 49 (1997), 83–100. L.A. Cordero, M. Fernández, A. Gray and L. Ugarte: Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), 5405–5433. L.A. Cordero, M. Fernández and L. Ugarte: Pseudo-Kähler metrics on six-dimensional nilpotent Lie algebras, J. Geom. Phys. 50 (2004), 115–137. G.R. Cavalcanti and M. Gualtieri: Generalized complex structures on nilmanifolds, J. Symplectic Geom. 2 (2004), 393–410. R. Campoamor Stursberg and G. Ovando: Complex structures on tangent and cotangent Lie algebras, arXiv:math.DG/0805.2520. A. Fino, M. Parton and S. Salamon: Families of strong KT structures in six dimensions, Comment. Math. Helv. 79 (2004), 317–340. V. Gorbatsevich, A. Onishchik and E.Vinberg: Lie Groups and Lie Algebras, III, Encyclopaedia of Mathematical Sciences 41, Springer, Berlin, 1994. M. Gualtieri: Generalized complex geometry, Ph.D. Thesis, Univ. of Oxford, 2003, arxiv:math.DG/0401221. L. García Vergnolle and E. Remm: Complex structures on quasi-filiform Lie algebras, J. Lie Theory 19 (2009), 251–265. N. Hitchin: Generalized Calabi-Yau manifolds, Q.J. Math. 54 (2003), 281–308. N. Jacobson: A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc. 6 (1955), 281–283. J. Milnor: Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293–329. L. Magnin: Complex structures on indecomposable 6-dimensional nilpotent real Lie algebras, Internat. J. Algebra Comput. 17 (2007), 77–113. G. Ovando: Invariant complex structures on solvable real Lie groups, Manuscripta Math. 103 (2000), 19–30. G. Ovando: Invariant pseudo-Kähler metrics in dimension four, J. Lie Theory 16 (2006), 371–391. P. Petravchuk: Lie algebras decomposable as a sum of an abelian and a nilpotent subalgebra, Ukr. Math. J. 40 (1988), 385–388. T. Sasaki: Classification of left invariant complex structures onGL(2, R) and U(2), Kumamoto J. Sci. (Math.) 14 (1980), 115–123. T. Sasaki: Classification of invariant complex structures on SL(3, R),Kumamoto J. Sci. (Math.) 15 (1982), 59–72. H. Samelson: A class of complex-analytic manifolds, Portugaliae Math. 12 (1953), 129–132. D.M. Snow: Invariant complex structures on reductive Lie groups, J. Reine Angew. Math. 371 (1986), 191–215. J.E. Snow: Invariant complex structures on four-dimensional solvable real Lie groups, Manuscripta Math. 66 (1990), 397–412. T. Sasaki: Classification of left invariant complex structures onGL(2, R) andU(2),Kumamoto J. Sci. (Math.) 14 (1981), 115–123. S.M. Salamon: Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), 311–333. M. Tekkoyun: On para-Euler-Lagrange and para-Hamiltonian equations, Phys. Lett. A 340 (2005), 7–11. L. Ugarte: Hermitian structures on six-dimensional nilmanifolds, Transform. Groups 12 (2007), 175–202. H.-C.Wang: Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1–32. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 72801982-9f3c-4db0-b765-6e7b4aa2221b |
Download
Original bundle
1 - 1 of 1