Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

ReinforSec: an automatic generator of synthetic malware samples and denial-of-service attacks through reinforcement learning

dc.contributor.authorHernandez Suarez, Aldo
dc.contributor.authorSanchez Perez, Gabriel
dc.contributor.authorToscano Medina, Linda K.
dc.contributor.authorPerez Meana, Hector
dc.contributor.authorOlivares Mercado, Jesus
dc.contributor.authorPortillo Portillo, Jose
dc.contributor.authorBenitez Garcia, Gibran
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorGarcía Villalba, Luis Javier
dc.date.accessioned2024-04-29T18:20:36Z
dc.date.available2024-04-29T18:20:36Z
dc.date.issued2023-01-20
dc.description2023 Descuentos MDPI
dc.description.abstractIn recent years, cybersecurity has been strengthened through the adoption of processes, mechanisms and rapid sources of indicators of compromise in critical areas. Among the most latent challenges are the detection, classification and eradication of malware and Denial of Service Cyber-Attacks (DoS). The literature has presented different ways to obtain and evaluate malware- and DoS-cyber-attack-related instances, either from a technical point of view or by offering ready-to-use datasets. However, acquiring fresh, up-to-date samples requires an arduous process of exploration, sandbox configuration and mass storage, which may ultimately result in an unbalanced or under-represented set. Synthetic sample generation has shown that the cost associated with setting up controlled environments and time spent on sample evaluation can be reduced. Nevertheless, the process is performed when the observations already belong to a characterized set, totally detached from a real environment. In order to solve the aforementioned, this work proposes a methodology for the generation of synthetic samples of malicious Portable Executable binaries and DoS cyber-attacks. The task is performed via a Reinforcement Learning engine, which learns from a baseline of different malware families and DoS cyber-attack network properties, resulting in new, mutated and highly functional samples. Experimental results demonstrate the high adaptability of the outputs as new input datasets for different Machine Learning algorithms.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (México)
dc.description.sponsorshipInstituto Politecnico Nacional (México)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationHernandez-Suarez, A.; Sanchez-Perez, G.; Toscano-Medina, L.K.; Perez-Meana, H.; Olivares-Mercado, J.; Portillo-Portillo, J.; Benitez-Garcia, G.; Sandoval Orozco, A.L.; García Villalba, L.J. ReinforSec: An Automatic Generator of Synthetic Malware Samples and Denial-of-Service Attacks through Reinforcement Learning. Sensors 2023, 23, 1231. https://doi.org/10.3390/s23031231
dc.identifier.doi10.3390/s23031231
dc.identifier.essn1424-8220
dc.identifier.officialurlhttps://doi.org/ 10.3390/s23031231
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/23/3/1231
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103659
dc.issue.number3
dc.journal.titleSensors
dc.language.isoeng
dc.page.final1231-28
dc.page.initial1231-1
dc.publisherMDPI
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/HE/101070303
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.8
dc.subject.cdu004.056
dc.subject.keywordMalware
dc.subject.keywordDenial of service
dc.subject.keywordReinforcement learning
dc.subject.keywordSynthetic sampling
dc.subject.keywordCybersecurity
dc.subject.keywordMachine learning
dc.subject.keywordCybersecurity datasets
dc.subject.keywordArtificial intelligence
dc.subject.keywordQ learning
dc.subject.ucmSeguridad informática
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1203.17 Informática
dc.titleReinforSec: an automatic generator of synthetic malware samples and denial-of-service attacks through reinforcement learning
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number23
dspace.entity.typePublication
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscoverydea44425-99a5-4fef-b005-52d0713d0e0d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-23-01231-v2.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

Collections