Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach

dc.contributor.authorUrman, Jesús M.
dc.contributor.authorHerranz, José M.
dc.contributor.authorUriarte, Iker
dc.contributor.authorRullán, María
dc.contributor.authorOyón, Daniel
dc.contributor.authorGonzález, Belén
dc.contributor.authorFernandez-Urién, Ignacio
dc.contributor.authorCarrascosa, Juan
dc.contributor.authorBolado, Federico
dc.contributor.authorZabalza, Lucía
dc.contributor.authorArechederra, María
dc.contributor.authorAlvarez-Sola, Gloria
dc.contributor.authorColyn, Leticia
dc.contributor.authorLatasa, María U.
dc.contributor.authorPuchades-Carrasco, Leonor
dc.contributor.authorPineda-Lucena, Antonio
dc.contributor.authorIraburu, María J.
dc.contributor.authorIruarrizaga-Lejarreta, Marta
dc.contributor.authorAlonso, Cristina
dc.contributor.authorSangro, Bruno
dc.contributor.authorPurroy, Ana
dc.contributor.authorGil, Isabel
dc.contributor.authorCarmona, Lorena
dc.contributor.authorCubero Palero, Francisco Javier
dc.contributor.authorMartínez-Chantar, María L.
dc.contributor.authorBanales, Jesús M.
dc.contributor.authorRomero, Marta R.
dc.contributor.authorMacias, Rocio I.R.
dc.contributor.authorMonte, Maria J.
dc.contributor.authorMarín, Jose J. G.
dc.contributor.authorVila, Juan J.
dc.contributor.authorCorrales, Fernando J.
dc.contributor.authorBerasain, Carmen
dc.contributor.authorFernández-Barrena, Maite G.
dc.contributor.authorAvila, Matías A.
dc.date.accessioned2023-06-17T09:10:53Z
dc.date.available2023-06-17T09:10:53Z
dc.date.issued2020-06-21
dc.description.abstractCholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.
dc.description.departmentDepto. de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipUnion Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICCIN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipInstituto de Salud Carlos III (ISCIII) / FEDER
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.sponsorshipFundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation)
dc.description.sponsorshipGobierno de Navarra Salud
dc.description.sponsorshipFundación La Caixa
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67496
dc.identifier.doi10.3390/cancers12061644
dc.identifier.issn2072-6694
dc.identifier.officialurlhttps://doi.org/10.3390/cancers12061644
dc.identifier.relatedurlhttps://www.mdpi.com/2072-6694/12/6/1644
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8342
dc.issue.number6
dc.journal.titleCancers
dc.language.isoeng
dc.page.initial1644
dc.publisherMDPI
dc.relation.projectIDESCALON (825510)
dc.relation.projectIDSAF2017-87301-R
dc.relation.projectIDRYC-2014-15242 and RYC2018-024475-1
dc.relation.projectIDTOMOXLIVER-CM (B2017/BMD-3817)
dc.relation.projectIDPI16/01126; PI19/00819; PI15/01132; PI18/01075; Miguel Servet Program CON14/00129
dc.relation.projectIDSEV-2016-0644
dc.relation.projectIDRare Cancers 2017
dc.relation.projectID58/17
dc.relation.projectIDHEPACARE
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordHuman bile
dc.subject.keywordcholangiocarcinoma
dc.subject.keywordpancreatic adenocarcinoma
dc.subject.keywordlipidomics
dc.subject.keywordproteomics
dc.subject.keywordmachine-learning
dc.subject.ucmGastroenterología y hepatología
dc.subject.ucmOncología
dc.subject.unesco3205.03 Gastroenterología
dc.subject.unesco3201.01 Oncología
dc.titlePilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublicationb3877679-0fbd-42e6-8541-1efeb2df768a
relation.isAuthorOfPublication.latestForDiscoveryb3877679-0fbd-42e6-8541-1efeb2df768a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cancers-12-01644-v3.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format

Collections