Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spectral statistics of Hamiltonian matrices in tridiagonal form

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

When a matrix is reduced to Lanczos tridiagonal form, its matrix elements can be divided into an analytic smooth mean value and a fluctuating part. The next-neighbor spacing distribution P(s) and the spectral rigidity Delta _(3) are shown to be universal functions of the average value of the fluctuating part. It is explained why the behavior of these quantities suggested by random matrix theory is valid in far more general cases.

Research Projects

Organizational Units

Journal Issue

Description

©2005 The American Physical Society. We thank Oriol Bohigas for enlightening discussions. This work is supported in part by Spanish government grants BFM2000-0600 and FTN2000-0963-C02. R. A. Molina acknowledges financial support from the European Unions Human Potential Program (contract no. HPRN-CT-200000144).

UCM subjects

Unesco subjects

Keywords

Collections