Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Escort mean values and the characterization of power-law-decaying probability densities

dc.contributor.authorTsallis, C.
dc.contributor.authorPlastino, A.R.
dc.contributor.authorFernández Álvarez-Estrada, Ramón
dc.date.accessioned2023-06-20T04:08:50Z
dc.date.available2023-06-20T04:08:50Z
dc.date.issued2009-04
dc.description© 2009 American Institute of Physics. One of us (C.T.) has benefited from interesting related conversations with H. J. Hilhorst, S. Umarov, and E. M. F. Curado, and acknowledges partial financial support by CNPq and Faperj (Brazilian agencies). Another one (R.F.A.-E.) acknowledges the financial supports of Ministerio de Educación y Ciencia (Project No. FPA2004-02602) and of Ministerio de Ciencia e Innovación (Project No. FIS2008-01323), Spain. This work was partially supported (A.R.P.) by the Projects FQM-2445 and FQM-207 of the Junta de Andalucía (Spain, EU).
dc.description.abstractEscort mean values or q-moments constitute useful theoretical tools for describing basic features of some probability densities such as those which asymptotically decay like power laws. They naturally appear in the study of many complex dynamical systems, particularly those obeying nonextensive statistical mechanics, a current generalization of the Boltzmann–Gibbs theory. They recover standard mean values or moments for q=1. Here we discuss the characterization of a nonnegative probability density by a suitable set of all its escort mean values together with the set of all associated normalizing quantities, provided that all of them converge. This opens the door to a natural extension of the well-known characterization, for the q=1 instance, of a distribution in terms of the standard moments, provided that all of them have finite values. This question would be specially relevant in connection with probability densities having divergent values for all nonvanishing standard moments higher than a given one e.g., probability densities asymptotically decaying as power laws, for which the standard approach is not applicable. The Cauchy–Lorentz distribution, whose second and higher even order moments diverge, constitutes a simple illustration of the interest of this investigation. In this context, we also address some mathematical subtleties with the aim of clarifying some aspects of an interesting nonlinear generalization of the Fourier transform, namely, the so called q-Fourier transform.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCNPq (Brazilian)
dc.description.sponsorshipFaperj (Brazilian)
dc.description.sponsorshipMinisterio de Educación y Ciencia (Spain)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipJunta de Andalucía (Spain, EU)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/36334
dc.identifier.doi10.1063/1.3104063
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3104063
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44968
dc.issue.number4
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFPA2004-02602
dc.relation.projectIDFIS2008-01323
dc.relation.projectIDFQM-2445 and FQM-207
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordFokker-Planck equation
dc.subject.keywordNonextensive statistical-mechanics
dc.subject.keywordIndependent random-variables
dc.subject.keywordAnomalous diffusion
dc.subject.keywordConvolution
dc.subject.keywordLionville
dc.subject.keywordBehavior.
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleEscort mean values and the characterization of power-law-decaying probability densities
dc.typejournal article
dc.volume.number50
dcterms.references1. A. Pluchino, A. Rapisarda, C. Tsallis, Europhys. Lett., 80, 26002 (2007). 2. A. Pluchino, A. Rapisarda, C. Tsallis, Physica A, 387, 3121 (2008). 3. C. Tsallis, J. Stat. Phys., 52, 479 (1988). 4. C. Tsallis, Phys. World, 10, 42 (1997). 5. C. Tsallis, Braz. J. Phys., 29, 1 (1999). 6. P. Douglas, S. Bergamini, F. Renzoni, Phys. Rev. Lett., 96, 110601 (2006). 7. B. Liu, J. Goree, Phys. Rev. Lett., 100, 055003 (2008). 8. A. Upadhyaya, J.-P. Rieu, J. A. Glazier, Y. Sawada, Physica A, 293, 549 (2001). 9. K. E. Daniels, C. Beck, E. Bodenschatz, Physica D, 193, 208 (2004). 10. Nonextensive Entropy—Interdisciplinary Applications, edited by M. Gell-Mann and C. Tsallis (Oxford University Press, Oxford, 2004). 11. Nonextensive Statistical Mechanics: New Trends, New perspectives, Europhysics News, edited by J. P. Boon and C. Tsallis (European Physical Society, 2005, Vol. 36). 12. C. Tsallis, Entropy, in Encyclopedia of Complexity and Systems Science (Springer, Berlin, 2009). 13. C. Tsallis, Introduction to Nonextensive Statistical Mechanics—Approaching a Complex World (Springer, New York, 2009). 14. C. Beck, Phys. Rev. Lett., 87, 180601 (2001). 15. C. Beck, Europhys. Lett., 57, 329 (2002). 16. H. Touchette, C. Beck, Phys. Rev. E, 71, 016131 (2005). 17. C. Beck, Phys. Rev. Lett., 98, 064502 (2007). 18. A. R. Plastino, A. Plastino, Physica A, 222, 347 (1995). 19. C. Tsallis, D. J. Bukman, Phys. Rev. E, 54, R2197 (1996). 20. T. D. Frank, Nonlinear Fokker-Planck Equations (Springer-Verlag, Berlin, 2005). 21. E. K. Lenzi, L. C. Malacarne, R. S. Mendes, I. T. Pedron, Physica A, 319, 245 (2003). 22. F. D. Nobre, E. M. F. Curado, G. Rowlands, Physica A, 334, 109 (2004). 23. V. Schwammle, E. M. F. Curado, F. D. Nobre, Eur. Phys. J. B, 58, 159 (2007). 24. V. Schwammle, F. D. Nobre, E. M. F. Curado, Phys. Rev. E, 76, 041123 (2007). 25. L. Borland, Phys. Rev. Lett., 89, 098701 (2002). 26. E. T. Jaynes, in Papers on Probability, Statistics and Statistical Physics, edited by R. D. Rosenkrantz (Reidel, Dordrecht, 1987). 27. E. T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2005). 28. C. Tsallis, R. S. Mendes, A. R. Plastino, Physica A, 261, 534 (1998). 29. C. Beck, F. Schlogl, Thermodynamics of Chaotic Systems (Cambridge University Press, Cambridge, 1993). 30. S. Abe, Phys. Rev. E, 68, 031101 (2003). 31. S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math., 76, 307 (2008). 32. S. Umarov, C. Tsallis, Phys. Lett. A, 372, 4874 (2008). 33. J. A. Shohat, J. D. Tamarkin, The Problem of Moments, Am. Math. Soc. Mathematical Surveys (American Mathematical Society, New York, 1943), Vol. II. 34. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Hafner, New York, 1965 (translated by N. Kemmer). 35. T. S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978). 36. A. G. Bakan, Proc. Am. Math. Soc., 130, 3545 (2002). 37. R. F. Álvarez-Estrada, Ann. Phys., 11, 357 (2002) --- Ann. Phys., 15, 379 (2006). 38. R. F. Álvarez-Estrada, Eur. Phys. J. A, 31, 761 (2007). 39. C. Tsallis, S. M. D. Queiros, AIP Conf. Proc., 965, 8 (2007) -- S. M. D. Queiros, C. Tsallis, ibid., 965, 21 (2007). 40. The so-called moment problem in theory of probabilities is a mathematically quite complex one. The discussion is normally done separately for various classes of support of the probability distribution, namely, for the [0,1] support (Hausdorff moment problem), the [0,∞) support (Stieltjes moment problem), and the (∞,−∞) support (Hamburger moment problem). General necessary and sufficient conditions are still elusive (Refs. 33–36).
dspace.entity.typePublication
relation.isAuthorOfPublication1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e
relation.isAuthorOfPublication.latestForDiscovery1d9ad3e6-2e32-4c9b-b666-73b1e18d1c0e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezÁlvarezEstradaRamón06LIBRE.pdf
Size:
518.46 KB
Format:
Adobe Portable Document Format

Collections