Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rate of convergence: the packing and centered Hausdorff measures of totally disconnected self-similar sets

dc.contributor.authorLLorente Comí, Marta
dc.contributor.authorMera Rivas, María Eugenia
dc.contributor.authorMorán Cabré, Manuel
dc.date.accessioned2023-06-17T22:46:24Z
dc.date.available2023-06-17T22:46:24Z
dc.date.issued2017
dc.description.abstractIn this paper we obtain the rates of convergence of the algorithms given in [13] and [14] for an automatic computation of the centered Hausdorff and packing measures of a totally disconnected self-similar set. We evaluate these rates empirically through the numerical analysis of three standard classes of selfsimilar sets, namely, the families of Cantor type sets in the real line and the plane and the class of Sierpinski gaskets. For these three classes and for small contraction ratios, sharp bounds for the exact values of the corresponding measures are obtained and it is shown how these bounds automatically yield estimates of the corresponding measures, accurate in some cases to as many as 14 decimal places. In particular, the algorithms accurately recover the exact values of the measures in all cases in which these values are known by geometrical arguments. Positive results, which confirm some conjectural values given in [13] and [14] for the measures, are also obtained for an intermediate range of larger contraction ratios. We give an argument showing that, for this range of contraction ratios, the problem is inherently computational in the sense that any theoretical proof, such as those mentioned above, might be impossible, so that in these cases, our method is the only available approach. For contraction ratios close to those of the connected case our computational method becomes intractably time consuming, so the computation of the exact values of the packing and centered Hausdorff measures in the general case, with the open set condition, remains a challenging problem.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/57241
dc.identifier.doi10.1016/j.chaos.2017.03.007
dc.identifier.issn0960-0779
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.chaos.2017.03.007
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18847
dc.journal.titleChaos, Solitons and Fractals
dc.language.isoeng
dc.page.final232
dc.page.initial220
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.keywordPacking measure
dc.subject.keywordCentered Hausdorff measure
dc.subject.keywordSelf-similar sets
dc.subject.keywordComputability of fractal measures
dc.subject.keywordRate of convergence.
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleRate of convergence: the packing and centered Hausdorff measures of totally disconnected self-similar sets
dc.typejournal article
dc.volume.number98
dspace.entity.typePublication
relation.isAuthorOfPublication71245121-5334-43ae-92e3-eb84a42790e8
relation.isAuthorOfPublication36e295dc-70b7-4ede-868c-a83357a04413
relation.isAuthorOfPublication.latestForDiscovery71245121-5334-43ae-92e3-eb84a42790e8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Llorente-Rate of convergence (Postprint).pdf
Size:
560.86 KB
Format:
Adobe Portable Document Format

Collections