Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Estimates by polynomials

dc.contributor.authorLlavona, José G.
dc.contributor.authorAron, R. M.
dc.contributor.authorChoi, Y.S.
dc.date.accessioned2023-06-20T16:57:38Z
dc.date.available2023-06-20T16:57:38Z
dc.date.issued1995-12
dc.description.abstractConsider the following possible properties which a Banach space X may have: (P): If (x(j)) and (y(j)) are are bounded sequences in X such that for all n greater than or equal to 1 and for every continuous n-homogeneous polynomial P on X, P(x(j)) - P(y(j)) --> 0, then, Q(x(j) - y(j)) --> 0 for all m greater than or equal to 1 and for every continuous us m-homogeneous polynomial Q on X. (RP): If (x(j)) and (y(j)) are bounded sequences in X such that for all n greater than or equal to 1 and for every continuous n-homogeneous polynomial P on X, P(x(j) - y(j)) --> 0, then Q(x(j)) - Q(y(j)) --> 0 for all m greater than or equal to 1 and for every continuous m-homogeneous polynomial Q on X. We study properties (P) and (RP) and their relation with the Schur property, Dunford-Pettis property, Lambda, and others. Several. applications of these properties are given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipNSF
dc.description.sponsorshipKOSEF
dc.description.sponsorshipGARC-KOSEF
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16382
dc.identifier.doi10.1017/S0004972700014957
dc.identifier.issn0004-9727
dc.identifier.officialurlhttp://journals.cambridge.org/download.php?file=%2F42139_000CFF88FC69EEF276645126CD9AB357_journals__BAZ_BAZ52_03_S0004972700014957a.pdf&cover=Y&code=4e144b89cb719e9cdb323feb4fadd1e3
dc.identifier.relatedurlhttp://journals.cambridge.org/action/login
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57518
dc.issue.number3
dc.journal.titleBulletin of the Australian Mathematical Society
dc.language.isoeng
dc.page.final486
dc.page.initial475
dc.publisherCambridge University Press
dc.relation.projectIDINT-9023951
dc.relation.projectIDPB90-0044.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.5
dc.subject.keywordSpace
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleEstimates by polynomials
dc.typejournal article
dc.volume.number52
dcterms.referencesAlencar, R., Aron, R.M. and Dineen, S., ‘A reflexive space of holomorphic functions in infinitely many variables’, Proc. Amer. Math. Soc. 90 (1984), 407–411. Aron, R.M. and Galindo, P., ‘Weakly compact multilinear mappings’, (preprint). Aron, R.M. and Prolla, J.B., ‘Polynomial approximation of differentiable functions on Banach spaces’, J. Reine Agnew. Math. 313 (1980), 195–216. Carne, T., Cole, B. and Gamelin, T., ‘A uniform algebra of analytic functions on a Banach space’, Trans. Amer. Math. Soc. 314 (1989), 639–659. Castillo, J.F. and Sanchez, C., ‘Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces’, J. Math. Anal. Appl. 185 (1994), 256–261. Choi, Y.S. and Kim, S.G., ‘Polynomial properties of Banach spaces’, J. Math. Anal. Appl. 190 (1995), 203–210. Davie, A.M. and Gamelin, T.W., ‘A theorem on polynomial-star approximation’, Proc. Amer. Math. Soc. 106 (1989), 351–358. Diestel, J., ‘A survey of results related to the Dunford-Pettis property’, in Contemp. Math. 2 (Amer. Math. Soc., Providence, R.I., 1980), pp. 15–60. Diestel, J., Geometry of Banach spaces, Lecture Notes in Mathematics 485 (Springer-Verlag, Berlin, Heidelberg, New York, 1975). Van Dulst, D., Reflexive and super-reflexive spaces, Math. Centre Tracts 102 (Amsterdam, 1982). Dunford, N. and Schwartz, J.T., Linear Operators, Part I, General Theory (J. Wiley, New York, 1964). Farmer, J.D., ‘Polynomial reflexivity in Banach spaces’, Israel J. Math. 87 (1994), 257–273. Farmer, J.D. and Johnson, W.B., ‘Polynomial Schur and polynomial Dunford-Pettis properties’, in Proc. Intern. Research Workshop on Banach Space Theory (Mérida, Venezuela), (Johnson, W.B. and Lin, B.L., Editors) (Amer. Math. Soc., Providence, RI, 1993), pp. 95–105. Jaramillo, J.A. and Prieto, A., ‘Weak-polynomial convergence on a Banach space’, Proc. Amer. Math. Soc. 118 (1993), 463–468. Josefson, B., ‘Bounding subsets of ℓ∞ (A)’, J. Math. Pures Appl. 57 (1978), 397–421. Grothendieck, A., ‘Sur les applications linéaires faiblement compactes d'espaces du type C(K)’, Canad. J. Math. 5 (1953), 129–173. Pelczynski, A., ‘A property of multilinear operations’, Studia Math. 16 (1957), 173–182. Petunin, Y.I. and Savkin, V.I., ‘Convergence generated by analytic functions’, Ukranian. Math. J. 40 (1988), 676–679. Rosenthal, H.P., ‘Some recent discoveries in the isomorphic theory of Banach spaces’, Bull. Amer. Math. Soc. 84 (1980), 803–831. Ryan, R.A., ‘Dunford-Pettis properties’, Bull. Acad. Polon. Sci. Math. 27 (1979), 373–379.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GLlavona17.pdf
Size:
484.1 KB
Format:
Adobe Portable Document Format

Collections