Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering
dc.contributor.author | Viñambres, Mario | |
dc.contributor.author | Filice, Marco | |
dc.contributor.author | Marciello, Marzia | |
dc.date.accessioned | 2023-06-17T12:40:41Z | |
dc.date.available | 2023-06-17T12:40:41Z | |
dc.date.issued | 2018-06-05 | |
dc.description.abstract | The immobilization of biocatalysts on magnetic nanomaterial surface is a very attractive alternative to achieve enzyme nanoderivatives with highly improved properties. The combination between the careful tailoring of nanocarrier surfaces and the site-specific chemical modification of biomacromolecules is a crucial parameter to finely modulate the catalytic behavior of the biocatalyst. In this work, a useful strategy to immobilize chemically aminated lipase B from Candida antárctica on magnetic iron oxide nanoparticles (IONPs) by covalent multipoint attachment or hydrophobic physical adsorption upon previous tailored engineering of nanocarriers with poly-carboxylic groups (citric acid or succinic anhydride, CALBEDA@CA-NPs and CALBEDA@SA-NPs respectively) or hydrophobic layer (oleic acid, CALBEDA@OA-NPs) is described. After full characterization, the nanocatalysts have been assessed in the enantioselective kinetic resolution of racemic methyl mandelate. Depending on the immobilization strategy, each enzymatic nanoderivative permitted to selectively improve a specific property of the biocatalyst. In general, all the immobilization protocols permitted loading from good to high lipase amount (149 < immobilized lipase < 234 mg/gFe). The hydrophobic CALBEDA@OA-NPs was the most active nanocatalyst, whereas the covalent CALBEDA@CA-NPs and CALBEDA@SA-NPs were revealed to be the most thermostable and also the most enantioselective ones in the kinetic resolution reaction (almost 90% ee R-enantiomer). A strategy to maintain all these properties in long-time storage (up to 1 month) by freeze-drying was also optimized. Therefore, the nanocarrier surface engineering is demonstrated to be a key-parameter in the design and preparation of lipase libraries with enhanced catalytic properties. | |
dc.description.department | Depto. de Química en Ciencias Farmacéuticas | |
dc.description.faculty | Fac. de Farmacia | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN)/FEDER | |
dc.description.sponsorship | Centro de Excelencia Severo Ochoa | |
dc.description.sponsorship | Comunidad de Madrid/Universidad Complutense de Madrid | |
dc.description.sponsorship | Consejo Superior de Investigaciones Cientificas (CSIC) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/70290 | |
dc.identifier.doi | 10.3390/polym10060615 | |
dc.identifier.issn | 2073-4360 | |
dc.identifier.officialurl | https://doi.org/10.3390/polym10060615 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/12760 | |
dc.issue.number | 6 | |
dc.journal.title | Polymers | |
dc.language.iso | eng | |
dc.page.initial | 615 | |
dc.publisher | MDPI | |
dc.relation.projectID | SAF2014-59118-JIN | |
dc.relation.projectID | (SEV-2015-0505) | |
dc.relation.projectID | 2017-T1/BIO-4992 | |
dc.relation.projectID | (Ref. 201760E007) | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 615.31 | |
dc.subject.cdu | 615.4 | |
dc.subject.keyword | Colloid surface engineering | |
dc.subject.keyword | Magnetic iron oxide nanoparticles | |
dc.subject.keyword | Oriented immobilization | |
dc.subject.keyword | Lipase | |
dc.subject.keyword | Catalysis | |
dc.subject.keyword | Nanotechnology | |
dc.subject.keyword | Nanobiocatalyst | |
dc.subject.keyword | Freeze-drying | |
dc.subject.ucm | Química farmaceútica | |
dc.subject.ucm | Tecnología farmaceútica | |
dc.subject.unesco | 2390 Química Farmacéutica | |
dc.title | Modulation of the Catalytic Properties of Lipase B from Candida antarctica by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering | |
dc.type | journal article | |
dc.volume.number | 10 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5a0a21c2-f525-4c2c-a3b2-ab78f25604b1 | |
relation.isAuthorOfPublication | b66b3a6e-1c2b-4ffe-b371-afb239918774 | |
relation.isAuthorOfPublication.latestForDiscovery | 5a0a21c2-f525-4c2c-a3b2-ab78f25604b1 |
Download
Original bundle
1 - 1 of 1