Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

How to automatically identify major research sponsors selecting keywords from the WoS Funding Agency field

dc.contributor.authorMorillo, Fernanda
dc.contributor.authorÁlvarez Bornstein, Belén
dc.date.accessioned2024-01-28T21:13:58Z
dc.date.available2024-01-28T21:13:58Z
dc.date.issued2018
dc.description.abstractIn a context of increasingly limited resources, the demand for information from research funding bodies is growing. The exploitation of the funding acknowledgements collected in WoS publications can be useful for these sponsors, not only because it allows them to know the published results with their financial support, but also because it provides a framework to evaluate the efficiency of the different funding instruments. The present work adds to the knowledge of previous studies to offer a simple and efficient methodology that automatically identifies major sponsors, and their funded research, using keywords. To this end, articles with Spain in the address field and English in the language field are obtained (years 2010–2014), given that WoS only considers funding acknowledgements written in English. Subsequently, the Funding Agency field of these articles is treated, selecting funders’ variants that will serve as keywords in the Full-Text Search for the location of the research supported by major sponsors. In addition, a sample of reviewed documents is provided to evaluate the reliability of the proposed methodology, performing also some statistical tests. The results show a recall of 91.5% of the sample articles, with a precision of 99%. Notwithstanding, there are differences in the automatic identification of funders by institutional sector and/or area, being the Government sector the one with the highest precision and recall, and the area of Agriculture, Biology and Environment the one with the best degree of association between the automatic classification and the reviewed one. Finally, possible future developments are offered, paying special attention to increasing the automation of the standardisation of funders’ names.
dc.description.departmentDepto. de Biblioteconomía y Documentación
dc.description.facultyFac. de Ciencias de la Documentación
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.statuspub
dc.identifier.citationMorillo, F., Álvarez-Bornstein, B. How to automatically identify major research sponsors selecting keywords from the WoS Funding Agency field. Scientometrics 117, 1755–1770 (2018). https://doi.org/10.1007/s11192-018-2947-8
dc.identifier.doi10.1007/s11192-018-2947-8
dc.identifier.essn1588-2861
dc.identifier.issn0138-9130
dc.identifier.officialurlhttps://doi.org/10.1007/s11192-018-2947-8
dc.identifier.relatedurlhttps://link.springer.com/journal/11192
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95709
dc.issue.number117
dc.journal.titleScientometrics
dc.language.isoeng
dc.page.final1770
dc.page.initial1755
dc.publisherSpringer
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//CSO2014-57826-P/ES/"FUNDING ACKNOWLEDGEMENTS": UN NUEVO INSTRUMENTO PARA EVALUAR LOS RESULTADOS DE LA FINANCIACION COMPETITIVA EN LAS PUBLICACIONES CIENTIFICAS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//BES-2015-073537/ES/BES-2015-073537/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordWoS
dc.subject.keywordFunding acknowledgements
dc.subject.keywordFunders identifcation
dc.subject.keywordAutomatic procedures
dc.subject.keywordPerformance evaluation
dc.subject.keywordStatistical analyses
dc.subject.ucmBibliometría
dc.subject.unesco5701.06 Documentación
dc.titleHow to automatically identify major research sponsors selecting keywords from the WoS Funding Agency field
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationb7f786bb-fc09-47b0-9177-1c62399dead9
relation.isAuthorOfPublication.latestForDiscoveryb7f786bb-fc09-47b0-9177-1c62399dead9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Identify_keywords_funding_WoS.pdf
Size:
903.1 KB
Format:
Adobe Portable Document Format

Collections