Multicollinearity mitigation and unbiased estimations: an application of restricted least squares

dc.book.titleAdvances in quantitative methods for economics and business
dc.contributor.authorSalmerón Gómez, Román
dc.contributor.authorGarcía García, Claudia
dc.contributor.authorGarcía-García, Catalina B.
dc.contributor.editorCruz Rambaud, Salvador
dc.contributor.editorTrinidad Segovia, Juan Evangelista
dc.contributor.editorGarcía-García, Catalina B.
dc.date.accessioned2025-10-31T12:01:03Z
dc.date.available2025-10-31T12:01:03Z
dc.date.issued2025
dc.description.abstractThis work presents an application of Restricted Least Squares (RLS) that achieves the mitigation of severe multicollinearity problems along with obtaining unbiased estimates. Both targets are restricted to the verification of the null hypothesis of the restrictions on the coefficients of the RLS model, which has been obtained with the application of two recent methodologies that mitigate multicollinearity problems: residualization and raise regression. The reliability of the proposed methodology is shown through Monte Carlo simulations, which illustrate that it is independent of the degree and type of multicollinearity. Finally, a particular empirical application is implemented, and it displays the possible combination of constraints depending on the case study. In conclusion, this application introduces a technique that can be used in all fields and particular studies where problematic relationships among explanatory variables emerge and the traditional methodologies to overcome the issue are biased techniques.
dc.description.departmentDepto. de Economía Aplicada, Estructura e Historia
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipJunta de Andalucía
dc.description.statuspub
dc.identifier.citationSalmerón Gómez, R.; García-García, C., & García-García, C.B. (2025). Multicollinearity Mitigation and Unbiased Estimations: An Application of Restricted Least Squares. En: Advances in Quantitative Methods for Economics and Business (dirs. Cruz Rambaud, S.; Trinidad Segovia, J.E. y García, C.B). Springer Nature.
dc.identifier.doi10.1007/978-3-031-84782-0_6
dc.identifier.isbn978-3-031-84782-0
dc.identifier.isbn978-3-031-84781-3
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-84782-0_6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125585
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDA-SEJ-496-UGR20
dc.rights.accessRightsmetadata only access
dc.subject.keywordRLS
dc.subject.keywordRestrictions
dc.subject.keywordMulticollinearity
dc.subject.keywordUnbiased estimator
dc.subject.keywordMonte Carlo
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleMulticollinearity mitigation and unbiased estimations: an application of restricted least squares
dc.typebook part
dspace.entity.typePublication
relation.isAuthorOfPublication01e2fe6d-f8c2-419b-8fbc-2e486c3504e1
relation.isAuthorOfPublication.latestForDiscovery01e2fe6d-f8c2-419b-8fbc-2e486c3504e1

Download