Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Actions on Environment under uncertainty: stochastic formulation and the associated deterministic problem

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorFaghloumi, Ch.
dc.date.accessioned2023-06-20T09:34:12Z
dc.date.available2023-06-20T09:34:12Z
dc.date.issued2008
dc.description.abstractAn application of the results of this paper proves that there is not always an economic benefit when destroying the environment for planting an alternative industrial project. Our criterion, to act, to delay or to deny the industrial investment over the environment, is given in terms of the free boundary associated to a deterministic degenerate obstacle problem (on in unbounded domain) associated to the stochastic optimal control problem formulated, initially, in terms of some suitable stochastic diffusion processes. The localizing estimates on the free boundary are obtained through a suitable spatial change of variables and by working with a suitable distance associated to the coefficient of the elliptic operator.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGISGP (Spain)
dc.description.sponsorshipCAM
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15247
dc.identifier.doi10.1007/BF03191827
dc.identifier.issn1578-7303
dc.identifier.officialurlhttp://www.springerlink.com/content/x658372165l07n2k/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49929
dc.issue.number2
dc.journal.titleRevista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A: Matemáticas
dc.language.isoeng
dc.page.final353
dc.page.initial335
dc.publisherReal Academia Ciencias Exactas Físicas Y Naturales
dc.relation.projectIDMTM2005-03463
dc.relation.projectIDCCG07-UCM/ESP-2787
dc.rights.accessRightsrestricted access
dc.subject.cdu519.21
dc.subject.keyworddegenerate obstacle problem
dc.subject.keywordUnbounded domain
dc.subject.keywordstochastic optimal control problem
dc.subject.keywordenvironmental economy
dc.subject.ucmEstadística aplicada
dc.subject.ucmProcesos estocásticos
dc.subject.unesco1208.08 Procesos Estocásticos
dc.titleActions on Environment under uncertainty: stochastic formulation and the associated deterministic problem
dc.typejournal article
dc.volume.number102
dcterms.referencesAKERLOF, G. A. (1998), The Market for Lemons: Qualitative Uncertainty and the Market Mechanism, Quarterly Journal of Economics, 84, 488–500. BELLMAN, R. (1957), Dynamic Programming. Academic Press, London. BENSOUSSAN, A. AND LIONS, J. L., (1978). Application des inégalités variationnelles en control stochastique. Dunod, Paris. BERMUDEZ, A., MORENO, C. AND SANMARTIN, A., (1997). Resolución numérica de un problema de valor óptimo de una opción. In Actas de la Jornada Científica en homenaje a A. Valle, Caraballo, T., et al Eds, Publicaciones de la Universidad de Sevilla. BREZIS, H., (1972). Problèmes Unilateraux. J. Math. Pures et Appl., 51, 1–168. BREZIS, H., (1983). Analyse fonctionnelle. Masson, Paris,. BREZIS, H. AND FRIEDMAN, A., (1976). Estimates on the support of the solutions of parabolic variational inequalities. Illinois J. Math, 20, 82–97. CRANDALL, M. G., ISHII, H. AND LIONS, P. L., (1992). User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 27, 1–67. DÍAZ, G., (1985). Acción óptima en una ecuación de la Programación Dinámica. Rev. R. Acad. Cienc. Exactas Fís. Nat., LXXIX, 89–105. DÍAZ, G., DÍAZ, J. I., FAGHLOUMI C.,, (2007). On an evolution problem associated to the modelling of incertitude into the Environment. Nonlinear Analysis: Real World Applications, 8, 399–404. DÍAZ, J. I., (1985). Nonlinear partial differential equations and free boundaries. 106, Pitman, London. DÍAZ, J. I., FAGHLOUMI, C., (2002). Analysis of a nonlinear elliptic problem arising in the study of policies on projects altering the environment, Applied Math. and Optimization, 45, 251–267. DIXIT, A. K. AND PINDYCK, R. S., (1994). Investment under Uncertainly. Princeton University Press, Princeton. FAGHLOUMI, C., (2004). Modelizacion y tratamiento de algunos problemas de Medio Ambiente. Ph. D., thesis, Universidad Complutense de Madrid, Madrid. FLEMING, W. H. AND RISHEL, R. (1975). Deterministic and stochastic optimal control, Springer-Verlag, New York. HERBELOT, O., (1992). Option Valuation of Flexible Investments: The Case of Environmental Investments in the Electric Power Industry, Ph. D., M.I.T., Massachusetts. KINDERLHERER, D. AND STAMPACCHIA, G., (2002). An introduction to Variational Inequalities and its Applications, Second edition, SIAM, Philadelphia. LIONS, J. L., (1969). Quelques méthodes de resolution des problémes aux limites non linearies, Dunod, París. OKSENDAL, B., (1998). Stochastic Differential Equations. Springer 5 th edition, Berlin. PINDYCK, R. S., (1986). Irreversible Investments, Capacity Choice and the Value of the Firm. American Economic Review, 78, 707–728. SCHEINKMAN, J. A., (1994). Public goods and the Environment, in Environment Economics and their Mathematical Models, Díaz, J. I. and Lions, J. L. Eds, Masson, Paris, 149–158. TROIANIELLO, G. M., (1987). Elliptic differential equations and obstacle problems. Plenum Press, New York.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
31.pdf
Size:
275.16 KB
Format:
Adobe Portable Document Format

Collections