Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electrolyte gated synaptic transistor based on an ultra-thin film of La0.7Sr0.3MnO3

dc.contributor.authorLópez Montes, Alejandro
dc.contributor.authorTornos Castillo, Javier
dc.contributor.authorPeralta, Andrea
dc.contributor.authorBarbero, Isabel
dc.contributor.authorFernández Cañizares, Francisco
dc.contributor.authorSánchez Santolino, Gabriel
dc.contributor.authorVarela Del Arco, María
dc.contributor.authorRivera Calzada, Alberto Carlos
dc.contributor.authorCamarero, Julio
dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorRomera, Miguel
dc.contributor.authorRomera Rabasa, Miguel Álvaro
dc.date.accessioned2024-01-31T10:18:34Z
dc.date.available2024-01-31T10:18:34Z
dc.date.issued2023-04-28
dc.description.abstractDeveloping electronic devices capable of reproducing synaptic functionality is essential in the context of implementing fast, low-energy consumption neuromorphic computing systems. Hybrid ionic/electronic three-terminal synaptic transistors are promising as efficient artificial synapses since they can process information and learn simultaneously. In this work, an electrolyte-gated synaptic transistor is reported based on an ultra-thin epitaxial La0.7Sr0.3MnO3 (LSMO) film, a half-metallic system close to a metal-insulator transition. The dynamic control of oxygen composition of the manganite ultra-thin film with voltage pulses applied through the gate terminal allows reversible modulation of its electronic properties in a non-volatile manner. The conductance modulation can be finely tuned with the amplitude, duration, and number of gating pulses, providing different alternatives to gradually update the synaptic weights. The transistor implements essential synaptic features such as excitatory postsynaptic potential, paired-pulse facilitation, long-term potentiation/depression of synaptic weights, and spike-time-dependent plasticity. These results constitute an important step toward the development of neuromorphic computing devices leveraging the tunable electronic properties of correlated oxides, and pave the way toward enhancing future device functionalities by exploiting the magnetic (spin) degree of freedom of the half metallic transistor channel.eng
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationA. López, J. Tornos, A. Peralta, I. Barbero, F. Fernandez-Canizares, G. Sanchez-Santolino, M. Varela, A. Rivera, J. Camarero, C. León, J. Santamaría, M. Romera, Electrolyte Gated Synaptic Transistor based on an Ultra-Thin Film of La0.7Sr0.3MnO3. Adv. Electron. Mater. 2023, 9, 2300007. https://doi.org/10.1002/aelm.202300007
dc.identifier.doi10.1002/aelm.202300007
dc.identifier.essn2199-160X
dc.identifier.officialurlhttps://doi.org/10.1002/aelm.202300007
dc.identifier.urihttps://hdl.handle.net/20.500.14352/96986
dc.journal.titleAdvanced Electronic Materials
dc.language.isoeng
dc.page.final2300007-11
dc.page.initial2300007-1
dc.publisherWiley Open Access
dc.relation.projectIDinfo:eu-repo/grantAgreement/CEX2020-001039-S
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2021-122980OB-C51
dc.relation.projectIDinfo:eu-repo/grantAgreement/RTI2018-099054-J-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/IJC2018-038164-I
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu538.9
dc.subject.keywordArtificial synapses
dc.subject.keywordElectrolyte gating
dc.subject.keywordManganite oxide films
dc.subject.keywordSynaptic transistors
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleElectrolyte gated synaptic transistor based on an ultra-thin film of La0.7Sr0.3MnO3
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication37cd0210-94b3-4946-8a34-1f54ca978cef
relation.isAuthorOfPublication56302a7e-f4de-4321-87a0-a26402e50cb4
relation.isAuthorOfPublication3ea619be-11c2-4a85-a759-62adf0de8be7
relation.isAuthorOfPublication63e453a5-31af-4eeb-9a5f-21c2edbbb733
relation.isAuthorOfPublication65d45b0a-357f-4ec4-9f97-0ffd3e1cbdcc
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication51631258-afb5-4b81-85dd-8dae6ac09259
relation.isAuthorOfPublication.latestForDiscovery37cd0210-94b3-4946-8a34-1f54ca978cef

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Electrolyte Gated Synaptic Transistor-Adv Elect Materials-2023.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format

Collections