α-Bi_2O_3 microcrystals and microrods: thermal synthesis, structural and luminescence properties

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science
Google Scholar
Research Projects
Organizational Units
Journal Issue
α-Bi_2O-3 microcrystals and microrods with pyramidal tips have been grown by a vapour–solid method using pure Bi as starting material. The morphology of the obtained microstructures depends on the annealing temperature and time. At 650 °C and for short annealing times, microcrystals with well defined facets and sizes of tens of microns, as well as clusters of microcrystals, are formed. Microrods were grown at 800 °C, mainly from nucleation sites in the clusters of microcrystals, and reach lengths of hundreds of microns. Micro-Raman spectroscopy measurements reveal the homogeneity of the obtained microstructures regarding the crystalline α-phase. The luminescence properties of the microrods have been investigated by cathodoluminescence in the scanning electron microscope and by photoluminescence in a confocal microscope. The obtained results were correlated with X-ray photoelectron spectroscopy measurements.
© 2012 Elsevier B.V. This work has been supported by MICINN through projects MAT2009-07882 and CSD2009-0013. The authors are grateful to E. Magnano, S. Nappini and M. Yablonskikh at the Sincrotron Trieste for useful advices on XPS measurements.
Unesco subjects
[1] A. Cabot, A. Marsal, J. Arbiol, J.R. Morante, Sens. Actuators B 99 (2004) 74. [2] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 130 (2008) 9658. [3] H.A. Harwig, Z. Anor, Allg. Chem. 444 (1978) 151. [4] H.A. Harwig, J.W. Weenk, Z. Anor, Allg. Chem. 444 (1978) 167. [5] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Surf. Sci. 480 (2002) 507. [6] L. Kumari, J. Lin, Y. Ma, J. Phys.: Condens. Matter 19 (2007) 406204. [7] H.W. Kim, J.W. Lee, C. Lee, J. Korean Phys. Soc. 49 (2006) 632. [8] X.P. Shen, S.K. Wu, H. Zhao, Q. Liu, Physica E 39 (2007) 133. [9] S. Park, H. Kim, C. Lee, D.H. Lee, S.S. Hong, J. Korean Phys. Soc. 53 (2008) 1965. [10] X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnology 20 (2009) 495501. [11] B. Ling, X.W. Sun, J.L. Zhao, Y.Q. Shen, Z.L. Dong, L.D. Sun, S.F. Li, S. Zhang, J. Nanosci. Nanotechnol. 10 (2010) 8322. [12] C. Jin, H. Kim, K. Baek, H.W. Kim, C. Lee, J. Korean Phys. Soc. 57 (2010) 1634. [13] W.P. Doyle, J. Phys. Chem. Solids 4 (1958) 144. [14] H. Gobrecht, S. Seeck, H.E. Bergt, A. Märtens, K. Kossmann, Phys. Stat. Sol. 33 (1969) 599. [15] V. Dolocan, Appl. Phys. 16 (1978) 405. [16] Y. Xiong, M. Wu, J. Ye, Q. Chen, Mater. Lett. 62 (2008) 1165. [17] W. Dong, C. Zhu, J. Phys. Chem. Solids 64 (2003) 265. [18] M. Vila, C. Díaz-Guerra, J. Piqueras, Mater. Chem. Phys. 133 (2012) 559. [19] O.M. Bordun, I.I. Kukharskii, V.V. Dmitruk, V.G. Antonyuk, V.P. Savchin, J. Appl. Spectrosc. 75 (2008) 681. [20] R.J. Betsch, W.B. White, Spectrochim. Acta 34A (1978) 505. [21] V.N. Denisov, A.N. Ivlev, A.S. Lipin, B.N. Mavrin, V.G. Orlov, J. Phys.: Condens. Matter 9 (1997) 4967. [22] S.N. Narang, N.D. Patel, V.B. Kartha, J. Mol. Struct. 327 (1994) 221. [23] A.J. Salazar-Pérez, M.A. Camacho-López, R.A. Morales-Luckie, V. Sánchez-Mendieta, F. Ureña-Núñez, J. Arenas-Latorre, Superficies y Vacio 18 (2005) 4. [24] D. Barreca, F. Morazzoni, G.A. Rizzi, R. Scotti, E. Tondello, Phys. Chem. Chem. Phys. 3 (2001) 1743. [25] X. Liu, H. Cao, J. Yin, Nano Res. 4 (2011) 470. [26] W.E. Morgan, W.J. Stec, J.R. van Wazer, Inorg. Chem. 12 (1973) 953. [27] Vineet S. Dharmadhikari, S.R. Sainkar, S. Badrinarayan, A. Goswami, J. Electron Spectrosc. Relat. Phenom. 25 (1982) 181. [28] A. Gulino, S. La Delfa, I. Fragalà, R.G. Egdell, Chem. Mater. 8 (1996) 1287. [29] Y. Guo, L. Chen, X. Yang, F. Ma, S. Zhang, Y. Yang, Y. Guo, X. Yuan, RSC Advances 2 (2012) 4656. [30] E. Gorlich, J. Haber, A. Stoch, J. Stoch, J. Solid State Chem. 33 (1980) 121. [31] C.W.M. Timmermans, G. Blasse, J. Solid State Chem. 52 (1984) 222. [32] Y. Zorenko, V. Gorbenko, T. Voznyak, V. Jary, M. Nikl, J. Lumin. 130 (2010) 1963. [33] V. Babin, V. Gorbenko, A. Krasnikov, A. Makhov, M. Nikl, K. Polak, S. Zazubovich, Y. Zorenko, J. Phys.: Condens. Matter 21 (2009) 415502. [34] A.M. Srivastava, J. Lumin. 78 (1998) 239. [35] M. Gaft, R. Reisfeld, G. Panczer, G. Boulon, T. Saraidarov, S. Erlish, Opt. Mater. 16 (2001) 279.