Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Generalized motion of level sets by functions of their curvatures on Riemannian manifolds

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorJiménez Sevilla, María Del Mar
dc.contributor.authorMacia Lang, Fabricio
dc.date.accessioned2023-06-20T09:31:41Z
dc.date.available2023-06-20T09:31:41Z
dc.date.issued2008
dc.description.abstractWe consider the generalized evolution of compact level sets by functions of their normal vectors and second fundamental forms on a Riemannian manifold M. The level sets of a function u;M -> R evolve in such a way whenever u solves an equation u (t) + F(Du, D(2) u) = 0, for some real function F satisfying a geometric condition. We show existence and uniqueness of viscosity solutions to this equation under the assumptions that M has nonnegative curvature, F is continuous off {Du = 0}, (degenerate) elliptic, and locally invariant by parallel translation. We then prove that this approach is geometrically consistent, hence it allows to define a generalized evolution of level sets by very general, singular functions of their curvatures. For instance, these assumptions on F are satisfied when F is given by the evolutions of level sets by their mean curvature (even in arbitrary codimension) or by their positive Gaussian curvature. We also prove that the generalized evolution is consistent with the classical motion by the corresponding function of the curvature, whenever the latter exists. When M is not of nonnegative curvature, the same results hold if one additionally requires that F is uniformly continuous with respect to D(2) u. Finally we give some counterexamples showing that several well known properties of the evolutions in R(n) are no longer true when M has negative sectional curvature.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM
dc.description.sponsorshipUCM-CAM
dc.description.sponsorshipMinisterio de Educacion y Ciencia
dc.description.sponsorshipJuan de la Cierva
dc.description.sponsorshipUCM-BSCH
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14757
dc.identifier.doi10.1007/s00526-008-0160-y
dc.identifier.issn0944-2669
dc.identifier.officialurlhttp://www.springerlink.com/content/ar25265860785385/fulltext.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49814
dc.journal.titleCalculus of variations and partial differential equations
dc.language.isoeng
dc.page.final167
dc.page.initial133
dc.publisherSpringer
dc.relation.projectID2006-03531
dc.relation.projectID910626
dc.relation.projectIDMAT2005-05730-C02-02
dc.relation.projectIDPR27/05-13939
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordHamilton-Jacobi equations
dc.subject.keywordMean-curvature
dc.subject.keywordViscosity solutions
dc.subject.keywordPlane-curves
dc.subject.keywordFlow
dc.subject.keywordHypersurfaces
dc.subject.keywordExistence
dc.subject.keywordStones
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleGeneralized motion of level sets by functions of their curvatures on Riemannian manifolds
dc.typejournal article
dc.volume.number33
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication36c2a4e7-ac6d-450d-b64c-692a94ff6361
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
09.pdf
Size:
450.14 KB
Format:
Adobe Portable Document Format

Collections