Characteristic Curves and the exponentiation in the Riordan Lie group: A connection through examples

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We point out how to use the classical characteristic method, that is used to solve quasilinear PDE's, to obtain the matrix exponential of some lower triangle infinite matrices. We use the Lie Frechet structure of the Riordan group described in [4]. After that we describe some linear dynamical systems in K[[x]] with a concrete involution being a symmetry or a time-reversal symmetry for them. We take this opportunity to assign some dynamical properties to the Pascal Triangle.
[1] L. Aceto, D.Trigiante. The matrices of Pascal and other greats. Amer. Math. Monthly 108(3) (2001) 232–245. [2] I.K. Babenko. Algebra, geometry and topology of the substitution group of formal power series. Russian Math. Surveys 68 (1) (2013) 1-68. [3] N.T. Cameron. and A. Nkwanta. On some (pseudo) involutions in the Riordan Group. Journal of Integer Sequences. Vol. 8 (2005) Article 05.3.7. [4] G.-S. Cheon, A. Luzón, M. A. Morón, L. F. Prieto-Martinez and M. Song Finite and infinite dimensional Lie group structures on Riordan groups. Adv. Math. 319 (2017) 522-566. [5] K.H. Hofmann and K.-H. Neeb. Pro-Lie groups which are infinite dimensional Lie groups. Math. Proc. Camb. Phil. Soc. 146 (2009) 351-378. [6] S.A. Jennings. Substitution groups of formal power series Canadian J. Math. 6 (1954) 325-340 [7] F. John, Partial Differential Equations, Third Edition. Applied Mathematical Sciences, 1. Springer-Verlag, New York, 1980. ISBN: 0-387-90327-5 [8] J. Lamb, J.A.G. Roberts. Time-reversal symmetry in dynamical systems: a survey Phys. D 112 (1-2) (1998) 1-39. [9] A. Luzón. Iterative processes related to Riordan arrays: The reciprocation and the inversion of power series. Discrete Math. 310 (2010) 3607-3618. [10] A. Luzón, D. Merlini, M. A. Morón, L. F. Prieto-Martinez and R. Sprugnoli. Some inverse limit approaches to the Riordan group. Linear Algebra Appl. 491 (2016) 239-262. [11] A. Luzón and M. A. Morón. Ultrametrics, Banach’s fixed point theorem and the Riordan group. Discrete Appl. Math. 156 (2008) 2620-2635. [12] J. Milnor, Remarks on infinite-dimensional Lie groups. pp. 1007-1057, In: B. DeWitt, R. Stora (eds), “Relativité, groupes et topologie II” (Les Houches, 1983), North Holland, 1984. [13] C. Moler, C. Van Loan. Nineteen Dubious Way to Compute the Exponential of a Matrix,Twenty-Five Years Later. Siam Rev. 45 (2003) 3-49. [14] A.G. O’Farrell and I. Short. Reversibility in dynamics and group theory. London Mathematical Society Lecture Note Series, 416. Cambridge University Press, Cambridge, 2015. ISBN: 978-1-107-44288-7 [15] W. Rossmann. Lie groups. An introduction through linear groups. Oxford Graduate text in Mathematics. Oxford University Press, Oxford. 2002 . [16] L. W. Shapiro, S. Getu, W.J. Woan and L. Woodson. The Riordan group. Discrete Appl. Math. 34 (1991) 229-239.