Beyond the semiclassical description of Bloch oscillations
dc.contributor.author | Domínguez-Adame Acosta, Francisco | |
dc.date.accessioned | 2023-06-20T03:55:07Z | |
dc.date.available | 2023-06-20T03:55:07Z | |
dc.date.issued | 2010 | |
dc.description | ©IOP Publishing Ltd. The authors thank E D´ıaz and C Gonzalez-Santander for helpful discussions. This work has been supported by MEC (project MOSAICO). | |
dc.description.abstract | Electrons moving in a tilted periodic potential perform a periodic motion, known as Bloch oscillation. Within a semiclassical description, the crystal momentum increases linearly with time until it reaches the boundary of the first Brillouin zone in reciprocal space. Then, it reenters the first Brillouin zone by the opposite edge. This periodic motion in reciprocal space is accompanied by an oscillation in real space. The angular frequency of the oscillations and their amplitude can be calculated within the semiclassical framework. Nevertheless, the semiclassical approach cannot explain the rich phenomenology of the Bloch oscillations, such as the breathing of the electronic wave packet. We present a simple description of the Bloch oscillations of tightly bound electrons in biased lattices at a basic level and calculate exactly the wavefunction as a function of time. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MEC | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31086 | |
dc.identifier.doi | 10.1088/0143-0807/31/3/021 | |
dc.identifier.issn | 0143-0807 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0143-0807/31/3/021 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44667 | |
dc.issue.number | 3 | |
dc.journal.title | European journal of physics | |
dc.language.iso | eng | |
dc.page.final | 644 | |
dc.page.initial | 639 | |
dc.publisher | IOP Publishing Ltd. | |
dc.relation.projectID | MOSAICO | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Semiconductor Superlattice | |
dc.subject.ucm | Física de materiales | |
dc.subject.ucm | Física del estado sólido | |
dc.subject.unesco | 2211 Física del Estado Sólido | |
dc.title | Beyond the semiclassical description of Bloch oscillations | |
dc.type | journal article | |
dc.volume.number | 31 | |
dcterms.references | [1] J. Adrian Reyes, H. A. Coyotécatlb, M. Castillo-Mussotc and G. H. Cocoletzic, Physica E 15, 124 (2002). [2] M. Combescot and T. Guillet, Eur. Phys. J. B 34, 9 (2003). [3] E. W. S. Caetano, V. N. Freire, G. A. Farias and E. F. da Silva, Brazilian J. Phys. 34, 702 (2004). [4] H. Hassanabadi, A. A. Rajabi, S. Zarrinkamar and M. M. Sarbazi, FewBody Syst. 45, 71 (2009). [5] M. Santhi and A. J. Peter, Eur. Phys. J. B 71, 225 (2009). [6] B. W. Knight and G. A. Peterson, Phys. Rev. 132, 1085 (1963). [7] P. R. Sievert and M. L. Glasser, Phys. Rev. B 7, 1265 (1973). [8] S. López and F. Domínguez-Adame, Semicond. Sci. Technol. 17, 227 (2002). [9] C. González-Santander and F. Domínguez-Adame, Physica E 41, 1645 (2009). [10] H. Sari, E. Kasapoglu, I. Sökmen and M. Güne¸s, Phys. Lett. A 319, 211 (2003). [11] H. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956), 866. [12] M. Marinescu and M. Gavrila, Phys. Rev. A 53, 2513 (1995). [13] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions (Dover, New York, 1972). [14] D. Chruściński, Ann. Phys. 321, 840 (2006). [15] E. Kasapoglu, H. Sari, M. Bursal and I. Sökmen, Physica E 16, 237 (2003). [1] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders Colledge Publishers, New ork, 1976), p. 213. [2] F. Bloch, Z. Phys. 52, 555 (1928). [3] C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934). [4] T. Hartmann, F. Keck, H. J. Korsch and S. Mossmann, New J. Phys. 6, 2 (2004). [5] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas and S. Schmitt-Rink, Phys. Rev. B 46, R7252 (1992). [6] K. Leo, P. Haring Bolivar, F. Brüggemann, R. Schwedler and K. Köhler, Solid State Commun. 84, 943 (1992). [7] M. BenDahan, E. Peik, J. Reichel, Y. Castin and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). [8] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). [9] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998). [10] Ch. Gaul, R. P. A. Lima, E. Díaz, C. A. Müller and F. Domínguez-Adame, Phys. Rev. Lett. 102, 255303 (2009). [11] R. Sapienza, P. Costantino, D. S. Wiersma, M. Ghulinyan, C. J. Oton and L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003). [12] H. Sanchis-Alepuz, Y. A. Kosevich and J. Sánchez-Dehesa, Phys. Rev. Lett. 98, 134301 (2007). [13] D. H. Dunlap and V. M. Kenkre, Phys. Lett. A 127, 438 (1988). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | dbc02e39-958d-4885-acfb-131220e221ba | |
relation.isAuthorOfPublication.latestForDiscovery | dbc02e39-958d-4885-acfb-131220e221ba |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Dguez-Adame22POSTPRINT.pdf
- Size:
- 240.92 KB
- Format:
- Adobe Portable Document Format