Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms

dc.contributor.authorGarcía Gutiérrez, Fernando
dc.contributor.authorDíaz Álvarez, Josefa
dc.contributor.authorMatías-Guiu Guia, Jordi A.
dc.contributor.authorPytel, Vanesa
dc.contributor.authorMatías-Guiu Guía, Jorge
dc.contributor.authorCabrera Martín, María Nieves
dc.contributor.authorAyala Rodrigo, José Luis
dc.date.accessioned2023-06-22T10:55:00Z
dc.date.available2023-06-22T10:55:00Z
dc.date.issued2022-07-19
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractArtifcial Intelligence aids early diagnosis and development of new treatments, which is key to slow down the progress of the diseases, which to date have no cure. The patients’ evaluation is carried out through diagnostic techniques such as clinical assessments neuroimaging techniques, which provide high-dimensionality data. In this work, a computational tool is presented that deals with the data provided by the clinical diagnostic techniques. This is a Python-based framework implemented with a modular design and fully extendable. It integrates (i) data processing and management of missing values and outliers; (ii) implementation of an evolutionary feature engineering approach, developed as a Python package, called PyWinEA using Mono-objective and Multi-objetive Genetic Algorithms (NSGAII); (iii) a module for designing predictive models based on a wide range of machine learning algorithms; (iv) a multiclass decision stage based on evolutionary grammars and Bayesian networks. Developed under the eXplainable Artifcial Intelligence and open science perspective, this framework provides promising advances and opens the door to the understanding of neurodegenerative diseases from a data-centric point of view. In this work, we have successfully evaluated the potential of the framework for early and automated diagnosis with neuroimages and neurocognitive assessments from patients with Alzheimer’s disease (AD) and frontotemporal dementia (FTD).en
dc.description.departmentDepto. de Medicina
dc.description.departmentDepto. de Radiología, Rehabilitación y Fisioterapia
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Medicina
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipInstituto de Salud Carlos III/Fondo Europeo de Desarrollo Regional
dc.description.sponsorshipJunta de Extremadura
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/74111
dc.identifier.citationGarcía Gutiérrez, F., Díaz Álvarez, J., Matías-Guiu Guia, J. A. et al. «GA-MADRID: Design and Validation of a Machine Learning Tool for the Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Genetic Algorithms». Medical & Biological Engineering & Computing, vol. 60, n.o 9, septiembre de 2022, pp. 2737-56. DOI.org (Crossref), https://doi.org/10.1007/s11517-022-02630-z.
dc.identifier.doi10.1007/s11517-022-02630-z
dc.identifier.issn0140-0118
dc.identifier.officialurlhttps://doi.org/10.1007/s11517-022-02630-z
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71883
dc.journal.titleMedical & Biological Engineering & Computing
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.projectIDINT20/00079
dc.relation.projectIDPID2019-110866RB-I00, PID2020-115570GB-C21
dc.relation.projectIDGR15068
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordAlzheimer’s disease
dc.subject.keywordFrontotemporal dementia
dc.subject.keywordNeurodegenerative diseases
dc.subject.keywordMachine learning
dc.subject.keywordArtificial Intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmNeurociencias (Medicina)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco2490 Neurociencias
dc.titleGA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithmsen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationd2238230-9cee-487f-b3cd-be34f115629c
relation.isAuthorOfPublicationc69d8b6b-095f-4e66-8d0a-56054acbfcfe
relation.isAuthorOfPublicationd73a810d-34c3-440e-8b5f-e2a7b0eb538f
relation.isAuthorOfPublication.latestForDiscoveryc69d8b6b-095f-4e66-8d0a-56054acbfcfe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11517-022-02630-z.pdf
Size:
5.34 MB
Format:
Adobe Portable Document Format

Collections