GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms
dc.contributor.author | García Gutiérrez, Fernando | |
dc.contributor.author | Díaz Álvarez, Josefa | |
dc.contributor.author | Matías-Guiu Guia, Jordi A. | |
dc.contributor.author | Pytel, Vanesa | |
dc.contributor.author | Matías-Guiu Guía, Jorge | |
dc.contributor.author | Cabrera Martín, María Nieves | |
dc.contributor.author | Ayala Rodrigo, José Luis | |
dc.date.accessioned | 2023-06-22T10:55:00Z | |
dc.date.available | 2023-06-22T10:55:00Z | |
dc.date.issued | 2022-07-19 | |
dc.description | CRUE-CSIC (Acuerdos Transformativos 2022) | |
dc.description.abstract | Artifcial Intelligence aids early diagnosis and development of new treatments, which is key to slow down the progress of the diseases, which to date have no cure. The patients’ evaluation is carried out through diagnostic techniques such as clinical assessments neuroimaging techniques, which provide high-dimensionality data. In this work, a computational tool is presented that deals with the data provided by the clinical diagnostic techniques. This is a Python-based framework implemented with a modular design and fully extendable. It integrates (i) data processing and management of missing values and outliers; (ii) implementation of an evolutionary feature engineering approach, developed as a Python package, called PyWinEA using Mono-objective and Multi-objetive Genetic Algorithms (NSGAII); (iii) a module for designing predictive models based on a wide range of machine learning algorithms; (iv) a multiclass decision stage based on evolutionary grammars and Bayesian networks. Developed under the eXplainable Artifcial Intelligence and open science perspective, this framework provides promising advances and opens the door to the understanding of neurodegenerative diseases from a data-centric point of view. In this work, we have successfully evaluated the potential of the framework for early and automated diagnosis with neuroimages and neurocognitive assessments from patients with Alzheimer’s disease (AD) and frontotemporal dementia (FTD). | en |
dc.description.department | Depto. de Medicina | |
dc.description.department | Depto. de Radiología, Rehabilitación y Fisioterapia | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Medicina | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Instituto de Salud Carlos III/Fondo Europeo de Desarrollo Regional | |
dc.description.sponsorship | Junta de Extremadura | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74111 | |
dc.identifier.citation | García Gutiérrez, F., Díaz Álvarez, J., Matías-Guiu Guia, J. A. et al. «GA-MADRID: Design and Validation of a Machine Learning Tool for the Diagnosis of Alzheimer’s Disease and Frontotemporal Dementia Using Genetic Algorithms». Medical & Biological Engineering & Computing, vol. 60, n.o 9, septiembre de 2022, pp. 2737-56. DOI.org (Crossref), https://doi.org/10.1007/s11517-022-02630-z. | |
dc.identifier.doi | 10.1007/s11517-022-02630-z | |
dc.identifier.issn | 0140-0118 | |
dc.identifier.officialurl | https://doi.org/10.1007/s11517-022-02630-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/71883 | |
dc.journal.title | Medical & Biological Engineering & Computing | |
dc.language.iso | eng | |
dc.publisher | Springer Nature | |
dc.relation.projectID | INT20/00079 | |
dc.relation.projectID | PID2019-110866RB-I00, PID2020-115570GB-C21 | |
dc.relation.projectID | GR15068 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.keyword | Alzheimer’s disease | |
dc.subject.keyword | Frontotemporal dementia | |
dc.subject.keyword | Neurodegenerative diseases | |
dc.subject.keyword | Machine learning | |
dc.subject.keyword | Artificial Intelligence | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.ucm | Neurociencias (Medicina) | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.subject.unesco | 2490 Neurociencias | |
dc.title | GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms | en |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d2238230-9cee-487f-b3cd-be34f115629c | |
relation.isAuthorOfPublication | c69d8b6b-095f-4e66-8d0a-56054acbfcfe | |
relation.isAuthorOfPublication | d73a810d-34c3-440e-8b5f-e2a7b0eb538f | |
relation.isAuthorOfPublication.latestForDiscovery | c69d8b6b-095f-4e66-8d0a-56054acbfcfe |
Download
Original bundle
1 - 1 of 1