Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Fuzzy Linguistic RFM Model Applied to Campaign Management

dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorBlasco López, María Francisca
dc.date.accessioned2025-01-14T13:04:15Z
dc.date.available2025-01-14T13:04:15Z
dc.date.issued2018
dc.description.abstractIn the literature there are some proposals for integrated schemes for campaign management based on segmentation from the results of the RFM model. RFM is a technique used to analyze customer behavior by means of three variables: Recency, Frequency and Monetary value. It is s very much in use in the business world due to its simplicity of use, implementation and interpretability of its results. However, RFM applications to campaign management present known limitations like the lack of precision because the scores of these variables are expressed by an ordinal scale. In this paper, we propose to link customer segmentation methods with campaign activities in a more effective way incorporating the 2–tuple model both to the RFM calculation process and to its subsequent exploitation by means of segmentation algorithms, specifically, k-means. This yields a greater interpretability of these results and also allows computing these values without loss of information. Therefore, marketers can effectively develop more effective marketing strategy.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationHerrera-Viedma, E., Carrasco, R.A., Blasco, M.F., García-Madariaga, J., 2019. A Fuzzy Linguistic RFM Model Applied to Campaign Management. Int. J. Interact. Multimed. Artif. Intell. 5, 21–27.
dc.identifier.doi10.9781/ijimai.2018.03.003
dc.identifier.issn1989-1660
dc.identifier.officialurlhttps://doi.org/10.9781/ijimai.2018.03.003
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114267
dc.issue.number4
dc.journal.titleInternational Journal of Interactive Multimedia and Artificial Intelligence
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu81'322
dc.subject.cdu658.818
dc.subject.keyword2-Tuple Model
dc.subject.keywordCampaign Management
dc.subject.keywordRelational Strategy
dc.subject.keywordRFM
dc.subject.ucmMarketing
dc.subject.ucmLingüística
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco5701.04 Lingüística Informatizada
dc.subject.unesco5311.05 Marketing (Comercialización)
dc.titleA Fuzzy Linguistic RFM Model Applied to Campaign Management
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number5
dspace.entity.typePublication
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication659a259d-31e0-4663-badd-2780456f158f
relation.isAuthorOfPublication.latestForDiscovery658b3e73-df89-4013-b006-45ea9db05e25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q2-06-2019-IJMA-ugr.pdf
Size:
767.47 KB
Format:
Adobe Portable Document Format

Collections