Approximation by smooth functions with no critical points on separable Banach spaces
dc.contributor.author | Azagra Rueda, Daniel | |
dc.contributor.author | Jiménez Sevilla, María Del Mar | |
dc.date.accessioned | 2023-06-20T09:31:48Z | |
dc.date.available | 2023-06-20T09:31:48Z | |
dc.date.issued | 2007-06-01 | |
dc.description.abstract | We characterize the class of separable Banach spaces X such that for every continuous function f : X -> Rand for every continuous function epsilon : X -> (0, +infinity) there exists a C-1 smooth function g: X -> R for which vertical bar f(x) - g(x)vertical bar <= epsilon(x) and g'(x) not equal 0 for all x is an element of X (that is, g has no critical points), as those infinite-dimensional Banach spaces X with separable dual X*. We also state sufficient conditions on a separable Banach space so that the function g can be taken to be of class C-p, for p = 1, 2,..., +infinity. In particular, we obtain the optimal order of smoothness of the approximating functions with no critical points on the classical spaces l(p)(N) and L-p(R-n). Some important consequences of the above results are (1) the existence of a non-linear Hahn-Banach theorem and the smooth approximation of closed sets, on the classes of spaces considered above; and (2) versions of all these results for a wide class of infinite-dimensional Banach manifolds. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Marie Curie Intra-European Fellowship of the European Community, Human Resources andMobility | |
dc.description.sponsorship | Fellowship of the Secretaría de Estado de Universidades e Investigación (Ministerio de Educación y | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14770 | |
dc.identifier.doi | 10.1016/j.jfa.2006.08.009 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022123606003600 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49820 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Functional Analysis | |
dc.language.iso | eng | |
dc.page.final | 36 | |
dc.page.initial | 1 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MEIF CT2003-500927. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.97 | |
dc.subject.keyword | Rolles theorem | |
dc.subject.keyword | Singular maps | |
dc.subject.keyword | Hilbert-space | |
dc.subject.keyword | Image size | |
dc.subject.keyword | Manifolds | |
dc.subject.keyword | Morse-Sard theorem | |
dc.subject.keyword | smooth bump functions | |
dc.subject.keyword | critical points | |
dc.subject.keyword | approximation by smooth functions | |
dc.subject.keyword | Sard functions | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Approximation by smooth functions with no critical points on separable Banach spaces | |
dc.type | journal article | |
dc.volume.number | 242 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 | |
relation.isAuthorOfPublication | 36c2a4e7-ac6d-450d-b64c-692a94ff6361 | |
relation.isAuthorOfPublication.latestForDiscovery | 6696556b-dc2e-4272-8f5f-fa6a7a2f5344 |
Download
Original bundle
1 - 1 of 1