Approximation by smooth functions with no critical points on separable Banach spaces

dc.contributor.authorAzagra Rueda, Daniel
dc.contributor.authorJiménez Sevilla, María Del Mar
dc.date.accessioned2023-06-20T09:31:48Z
dc.date.available2023-06-20T09:31:48Z
dc.date.issued2007-06-01
dc.description.abstractWe characterize the class of separable Banach spaces X such that for every continuous function f : X -> Rand for every continuous function epsilon : X -> (0, +infinity) there exists a C-1 smooth function g: X -> R for which vertical bar f(x) - g(x)vertical bar <= epsilon(x) and g'(x) not equal 0 for all x is an element of X (that is, g has no critical points), as those infinite-dimensional Banach spaces X with separable dual X*. We also state sufficient conditions on a separable Banach space so that the function g can be taken to be of class C-p, for p = 1, 2,..., +infinity. In particular, we obtain the optimal order of smoothness of the approximating functions with no critical points on the classical spaces l(p)(N) and L-p(R-n). Some important consequences of the above results are (1) the existence of a non-linear Hahn-Banach theorem and the smooth approximation of closed sets, on the classes of spaces considered above; and (2) versions of all these results for a wide class of infinite-dimensional Banach manifolds.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMarie Curie Intra-European Fellowship of the European Community, Human Resources andMobility
dc.description.sponsorshipFellowship of the Secretaría de Estado de Universidades e Investigación (Ministerio de Educación y
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14770
dc.identifier.doi10.1016/j.jfa.2006.08.009
dc.identifier.issn0022-1236
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022123606003600
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49820
dc.issue.number1
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.final36
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDMEIF CT2003-500927.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.97
dc.subject.keywordRolles theorem
dc.subject.keywordSingular maps
dc.subject.keywordHilbert-space
dc.subject.keywordImage size
dc.subject.keywordManifolds
dc.subject.keywordMorse-Sard theorem
dc.subject.keywordsmooth bump functions
dc.subject.keywordcritical points
dc.subject.keywordapproximation by smooth functions
dc.subject.keywordSard functions
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleApproximation by smooth functions with no critical points on separable Banach spaces
dc.typejournal article
dc.volume.number242
dspace.entity.typePublication
relation.isAuthorOfPublication6696556b-dc2e-4272-8f5f-fa6a7a2f5344
relation.isAuthorOfPublication36c2a4e7-ac6d-450d-b64c-692a94ff6361
relation.isAuthorOfPublication.latestForDiscovery6696556b-dc2e-4272-8f5f-fa6a7a2f5344

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
13.pdf
Size:
440.16 KB
Format:
Adobe Portable Document Format

Collections