Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Automatic prediction and model selection

dc.contributor.advisorPérez Amaral, Teodosio
dc.contributor.advisorWhite, Halbert
dc.contributor.authorMarinucci, Massimiliano
dc.date.accessioned2023-06-20T07:09:40Z
dc.date.available2023-06-20T07:09:40Z
dc.date.defense2008-01-22
dc.date.issued2009-03-12
dc.descriptionPor indicaciones del autor, el texto completo se ha retirado con fecha 18 de Febrero de 2010. (Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Departamento de Fundamentos del Análisis Económico II (Economía Cuantitativa), leída el 22-01-2008)
dc.description.abstractThis dissertation is about Automatic Model building and Prediction procedures that are useful to approximate and forecast the expected conditional mean of a stationary target variable. We review the theoretical foundations of model selection and compare the out-of-sample predictive ability of different automatic selection procedures, focusing especially on the the RETINA method proposed by P´erez-Amaral, Gallo & White (2003). A new software implementation of RETINA called RETINA Winpack is proposed. This software piece is designed for immediate use by non-specialist applied researchers. As an important advantage over the original RETINA implementation,it handles extreme observations and allows for distinctive treatment of categorical inputs. Using RETINA Winpack, we present an empirical application to Telecommunications demand using firm-level data. RETINA Winpack is proven to be useful for model specification search among hundred of candidate inputs and for finding suitable approximations that behave well out-of-sample in comparison with alternative linear baseline models. With the aim of increasing the flexibility of the RETINA method in order to deal with non-linearities in the target variable, a new method called RETINET is presented. It generalizes RETINA by expanding the functional approximating capabilities in a way which is similar to Artificial Neural Networks (ANN), by avoiding some of the difficulties related to their practical implementation. As an advantage over traditional ANN, RETINET’s specifications retain, to some extent, analytical interpretability. Based on two different simulation examples the method provides favorable evidence with respect to the out-of-sample forecasting ability provided by both simpler and/or more complex modeling alternatives. RETINET balances between a) Flexibility b) Parsimony c) Reverse engineering ability, and d) Computational speed. The proposed method is inspired by a Specific to General philosophy, going from the simple to the sophisticatedly simple, avoiding unnecessary complexity.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/8103
dc.identifier.isbn978-84-692-0086-5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/48498
dc.language.isospa
dc.page.total183
dc.publication.placeMadrid
dc.publisherUniversidad Complutense de Madrid, Servicio de Publicaciones
dc.rights.accessRightsrestricted access
dc.subject.cdu330.43(043.2)
dc.subject.keywordEconometría
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleAutomatic prediction and model selection
dc.typedoctoral thesis
dspace.entity.typePublication
relation.isAdvisorOfPublication14ac85fa-418f-40ee-b712-4075cd494574
relation.isAdvisorOfPublication.latestForDiscovery14ac85fa-418f-40ee-b712-4075cd494574

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
T30363.pdf
Size:
2.98 MB
Format:
Adobe Portable Document Format

Collections