A generalization of the migrativity property of aggregation functions
dc.contributor.author | Bustince, Humberto | |
dc.contributor.author | De Baets, Bernard | |
dc.contributor.author | Fernández, Javier | |
dc.contributor.author | Mesiar, Radko | |
dc.contributor.author | Montero De Juan, Francisco Javier | |
dc.date.accessioned | 2023-06-20T03:52:04Z | |
dc.date.available | 2023-06-20T03:52:04Z | |
dc.date.issued | 2012 | |
dc.description.abstract | This paper brings a generalization of the migrativity property of aggregation functions, suggested in earlier work of some of the present authors by imposing the a-migrativity property of Durante and Sarkoci for all values of a instead of a single one. Replacing the algebraic product by an arbitrary aggregation function B naturally leads to the properties of a–B-migrativity and B-migrativity. This generalization establishes a link between migrativity and a particular case of Aczel’s general associativity equation, already considered by Cutello and Montero as a recursive formula for aggregation. Following a basic investigation, emphasis is put on aggregation functions that can be represented in terms of an additive generator, more specifically, strict t-norms, strict t-conorms and representable uninorms. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Gobierno de España | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30345 | |
dc.identifier.citation | Bustince, H., De Baets, B., Fernandez, J., Mesiar, R., Montero, J.: A generalization of the migrativity property of aggregation functions. Information Sciences. 191, 76-85 (2012). https://doi.org/10.1016/j.ins.2011.12.019 | |
dc.identifier.doi | 10.1016/j.ins.2011.12.019 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.ins.2011.12.019 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0020025511006682 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44585 | |
dc.journal.title | Information Sciences | |
dc.language.iso | eng | |
dc.page.final | 75 | |
dc.page.initial | 76 | |
dc.publisher | Elsevier Science Inc | |
dc.relation.projectID | TIN2010-15055 | |
dc.relation.projectID | TIN2009-07901 | |
dc.relation.projectID | APVV-0073-10 | |
dc.relation.projectID | 6198898701 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.8 | |
dc.subject.keyword | Aggregation function | |
dc.subject.keyword | Migrativity | |
dc.subject.keyword | Associativity | |
dc.subject.keyword | Additive generator | |
dc.subject.keyword | t-Norm | |
dc.subject.keyword | Uninorm | |
dc.subject.ucm | Investigación operativa (Matemáticas) | |
dc.subject.unesco | 1207 Investigación Operativa | |
dc.title | A generalization of the migrativity property of aggregation functions | en |
dc.type | journal article | |
dc.volume.number | 191 | |
dcterms.references | [1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press Inc., New York, 1966. [2] J. Aczél, V.D. Belousov, M. Hosszú, Generalized associativity and bisymmetry on quasigroups, Acta Mathematica Academiae Scientiarum Hungaricae 11 (1960) 127–136. [3] A. Amo, J. Montero, E. Molina, Representation of consistent recursive rules, European Journal of Operational Research 130 (2001) 29–53. [4] G. Beliakov, T. Calvo, On migrative means and copulas, in: Proceedings of Fifth International Summer School on Aggregation Operators, Palma de Mallorca, 2009, pp. 107–110. [5] M. Budincˇevic´ , M. Kurilic´ , A family of strict and discontinuous triangular norms, Fuzzy Sets and Systems 95 (1998) 381–384. [6] H. Bustince, J. Fernández, R. Mesiar, J. Montero, R. Orduna, Overlap functions, Nonlinear Analysis 72 (2010) 1488–1499. [7] H. Bustince, J. Montero, R. Mesiar, Migrativity of aggregation functions, Fuzzy Sets and Systems 160 (2009) 766–777. [8] T. Calvo, A. Kolesárová, M. Komorníková, R. Mesiar, Aggregation operators, properties, classes and construction methods, in: T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators New Trends and Applications, Physica-Verlag, Heidelberg, 2002, pp. 3–104. [9] V. Cutello, J. Montero, Recursive connective rules, International Journal of Intelligent Systems 14 (1999) 3–20. [10] B. De Baets, J. Fodor, van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof, Fuzzy Sets and Systems 104 (1999)133–136. [11] F. Durante, R. Ghiselli Ricci, Supermigrative semi-copulas and triangular norms, Information Sciences 179 (2009) 2689–2694. [12] F. Durante, P. Sarkoci, A note on the convex combinations of triangular norms, Fuzzy Sets and Systems 159 (2008) 77–80. [13] J. Fodor, B. De Baets, A single-point characterization of representable uninorms, Fuzzy Sets and Systems,submitted for publication, doi:10.1016/j.fss.2011.12.001. [14] J. Fodor, I.J. Rudas, On continuous triangular norms that are migrative, Fuzzy Sets and Systems 158 (2007) 1692–1697. [15] J. Fodor, I.J. Rudas, On some classes of aggregation functions that are migrative, in: Proceedings of IFSA-EUSFLAT 2009, Lisbon, Portugal, 2009, pp. 653–656. [16] J. Fodor, I.J. Rudas, Migrative t-norms with respect continuous ordinal sums, Information Sciences 181 (2011) 4860–4866. [17] J. Fodor, R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997) 411–427. [18] E.P. Klement, R. Mesiar, E. Pap, On the relationship of associative compensatory operators to triangular norms and conorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 4 (1996) 129–144. [19] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000. [20] K.C. Maes, B. De Baets, Negation and affirmation: the role of involutive negators, Soft Computing 11 (2007) 647–654. [21] K.C. Maes, B. De Baets, Commutativity and self-duality: two tales of one equation, International Journal of Approximate Reasoning 50 (2009) 189–199. [22] K. Mak, Coherent continuous systems and the generalized functional equation of associativity, Mathematics of Operations Research 12 (1987) 597–625. [23] Gy. Maksa, Quasisums and generalized associativity, Aequationes Mathematicae 69 (2005) 6–27. [24] R. Mesiar, H. Bustince, J. Fernandez, On the a-migrativity of semicopulas, quasi-copulas, and copulas, Information Sciences 180 (2010) 1967–1976. [25] J. Montero, V. López, D. Gómez, The role of fuzziness in decision making, in: D. Ruan et al. (Eds.), Fuzzy Logic: A Spectrum of Applied and Theoretical Issues, Springer, 2007, pp. 337–349. [26] J. Montero, D. Gómez, S. Muñoz, Fuzzy information representation for decision aiding, in: Proceedings of the IPMU Conference, Málaga, Spain, 2008, pp.1425–1430. [27] B. Roy, Decision sciences or decision aid sciences, European Journal of Operational Research 66 (1993) 184–203. [28] R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems 80 (1996) 111–120. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea | |
relation.isAuthorOfPublication.latestForDiscovery | 9e4cf7df-686c-452d-a98e-7b2602e9e0ea |
Download
Original bundle
1 - 1 of 1