Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A generalization of the migrativity property of aggregation functions

dc.contributor.authorBustince, Humberto
dc.contributor.authorDe Baets, Bernard
dc.contributor.authorFernández, Javier
dc.contributor.authorMesiar, Radko
dc.contributor.authorMontero De Juan, Francisco Javier
dc.date.accessioned2023-06-20T03:52:04Z
dc.date.available2023-06-20T03:52:04Z
dc.date.issued2012
dc.description.abstractThis paper brings a generalization of the migrativity property of aggregation functions, suggested in earlier work of some of the present authors by imposing the a-migrativity property of Durante and Sarkoci for all values of a instead of a single one. Replacing the algebraic product by an arbitrary aggregation function B naturally leads to the properties of a–B-migrativity and B-migrativity. This generalization establishes a link between migrativity and a particular case of Aczel’s general associativity equation, already considered by Cutello and Montero as a recursive formula for aggregation. Following a basic investigation, emphasis is put on aggregation functions that can be represented in terms of an additive generator, more specifically, strict t-norms, strict t-conorms and representable uninorms.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30345
dc.identifier.citationBustince, H., De Baets, B., Fernandez, J., Mesiar, R., Montero, J.: A generalization of the migrativity property of aggregation functions. Information Sciences. 191, 76-85 (2012). https://doi.org/10.1016/j.ins.2011.12.019
dc.identifier.doi10.1016/j.ins.2011.12.019
dc.identifier.issn0020-0255
dc.identifier.officialurlhttps//doi.org/10.1016/j.ins.2011.12.019
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0020025511006682
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44585
dc.journal.titleInformation Sciences
dc.language.isoeng
dc.page.final75
dc.page.initial76
dc.publisherElsevier Science Inc
dc.relation.projectIDTIN2010-15055
dc.relation.projectIDTIN2009-07901
dc.relation.projectIDAPVV-0073-10
dc.relation.projectID6198898701
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordAggregation function
dc.subject.keywordMigrativity
dc.subject.keywordAssociativity
dc.subject.keywordAdditive generator
dc.subject.keywordt-Norm
dc.subject.keywordUninorm
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleA generalization of the migrativity property of aggregation functionsen
dc.typejournal article
dc.volume.number191
dcterms.references[1] J. Aczél, Lectures on Functional Equations and their Applications, Academic Press Inc., New York, 1966. [2] J. Aczél, V.D. Belousov, M. Hosszú, Generalized associativity and bisymmetry on quasigroups, Acta Mathematica Academiae Scientiarum Hungaricae 11 (1960) 127–136. [3] A. Amo, J. Montero, E. Molina, Representation of consistent recursive rules, European Journal of Operational Research 130 (2001) 29–53. [4] G. Beliakov, T. Calvo, On migrative means and copulas, in: Proceedings of Fifth International Summer School on Aggregation Operators, Palma de Mallorca, 2009, pp. 107–110. [5] M. Budincˇevic´ , M. Kurilic´ , A family of strict and discontinuous triangular norms, Fuzzy Sets and Systems 95 (1998) 381–384. [6] H. Bustince, J. Fernández, R. Mesiar, J. Montero, R. Orduna, Overlap functions, Nonlinear Analysis 72 (2010) 1488–1499. [7] H. Bustince, J. Montero, R. Mesiar, Migrativity of aggregation functions, Fuzzy Sets and Systems 160 (2009) 766–777. [8] T. Calvo, A. Kolesárová, M. Komorníková, R. Mesiar, Aggregation operators, properties, classes and construction methods, in: T. Calvo, G. Mayor, R. Mesiar (Eds.), Aggregation Operators New Trends and Applications, Physica-Verlag, Heidelberg, 2002, pp. 3–104. [9] V. Cutello, J. Montero, Recursive connective rules, International Journal of Intelligent Systems 14 (1999) 3–20. [10] B. De Baets, J. Fodor, van Melle’s combining function in MYCIN is a representable uninorm: an alternative proof, Fuzzy Sets and Systems 104 (1999)133–136. [11] F. Durante, R. Ghiselli Ricci, Supermigrative semi-copulas and triangular norms, Information Sciences 179 (2009) 2689–2694. [12] F. Durante, P. Sarkoci, A note on the convex combinations of triangular norms, Fuzzy Sets and Systems 159 (2008) 77–80. [13] J. Fodor, B. De Baets, A single-point characterization of representable uninorms, Fuzzy Sets and Systems,submitted for publication, doi:10.1016/j.fss.2011.12.001. [14] J. Fodor, I.J. Rudas, On continuous triangular norms that are migrative, Fuzzy Sets and Systems 158 (2007) 1692–1697. [15] J. Fodor, I.J. Rudas, On some classes of aggregation functions that are migrative, in: Proceedings of IFSA-EUSFLAT 2009, Lisbon, Portugal, 2009, pp. 653–656. [16] J. Fodor, I.J. Rudas, Migrative t-norms with respect continuous ordinal sums, Information Sciences 181 (2011) 4860–4866. [17] J. Fodor, R. Yager, A. Rybalov, Structure of uninorms, International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997) 411–427. [18] E.P. Klement, R. Mesiar, E. Pap, On the relationship of associative compensatory operators to triangular norms and conorms, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 4 (1996) 129–144. [19] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, 2000. [20] K.C. Maes, B. De Baets, Negation and affirmation: the role of involutive negators, Soft Computing 11 (2007) 647–654. [21] K.C. Maes, B. De Baets, Commutativity and self-duality: two tales of one equation, International Journal of Approximate Reasoning 50 (2009) 189–199. [22] K. Mak, Coherent continuous systems and the generalized functional equation of associativity, Mathematics of Operations Research 12 (1987) 597–625. [23] Gy. Maksa, Quasisums and generalized associativity, Aequationes Mathematicae 69 (2005) 6–27. [24] R. Mesiar, H. Bustince, J. Fernandez, On the a-migrativity of semicopulas, quasi-copulas, and copulas, Information Sciences 180 (2010) 1967–1976. [25] J. Montero, V. López, D. Gómez, The role of fuzziness in decision making, in: D. Ruan et al. (Eds.), Fuzzy Logic: A Spectrum of Applied and Theoretical Issues, Springer, 2007, pp. 337–349. [26] J. Montero, D. Gómez, S. Muñoz, Fuzzy information representation for decision aiding, in: Proceedings of the IPMU Conference, Málaga, Spain, 2008, pp.1425–1430. [27] B. Roy, Decision sciences or decision aid sciences, European Journal of Operational Research 66 (1993) 184–203. [28] R. Yager, A. Rybalov, Uninorm aggregation operators, Fuzzy Sets and Systems 80 (1996) 111–120.
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero149.pdf
Size:
236.85 KB
Format:
Adobe Portable Document Format

Collections