Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Cybersecurity and Network Forensics: Analysis of Malicious Traffic towards a Honeynet with Deep Packet Inspection

dc.contributor.authorPimenta Rodrigues, Gabriel
dc.contributor.authorde Oliveira Albuquerque, Robson
dc.contributor.authorGomes de Deus, Flávio
dc.contributor.authorde Sousa Jr., Rafael
dc.contributor.authorde Oliveira Júnior, Gildásio
dc.contributor.authorGarcía Villalba, Luis Javier
dc.contributor.authorKim, Tai-Hoon
dc.date.accessioned2023-06-18T00:04:27Z
dc.date.available2023-06-18T00:04:27Z
dc.date.issued2017-10-18
dc.description.abstractAny network connected to the Internet is subject to cyber attacks. Strong security measures, forensic tools, and investigators contribute together to detect and mitigate those attacks, reducing the damages and enabling reestablishing the network to its normal operation, thus increasing the cybersecurity of the networked environment. This paper addresses the use of a forensic approach with Deep Packet Inspection to detect anomalies in the network traffic. As cyber attacks may occur on any layer of the TCP/IP networking model, Deep Packet Inspection is an effective way to reveal suspicious content in the headers or the payloads in any packet processing layer, excepting of course situations where the payload is encrypted. Although being efficient, this technique still faces big challenges. The contributions of this paper rely on the association of Deep Packet Inspection with forensics analysis to evaluate different attacks towards a Honeynet operating in a network laboratory at the University of Brasilia. In this perspective, this work could identify and map the content and behavior of attacks such as the Mirai botnet and brute-force attacks targeting various different network services. Obtained results demonstrate the behavior of automated attacks (such as worms and bots) and non-automated attacks (brute-force conducted with different tools). The data collected and analyzed is then used to generate statistics of used usernames and passwords, IP and services distribution, among other elements. This paper also discusses the importance of network forensics and Chain of Custody procedures to conduct investigations and shows the effectiveness of the mentioned techniques in evaluating different attacks in networks.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipBrazilian research and innovation Agencies CAPES
dc.description.sponsorshipFINEP–Funding Authority for Studies and Projects
dc.description.sponsorshipFAPDF–Research Support Foundation of the Federal District
dc.description.sponsorshipMinistry of Planning, Development and Management
dc.description.sponsorshipDPGU–Brazilian Union Public Defender
dc.description.sponsorshipSungshin W. University
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67591
dc.identifier.doi10.3390/app7101082
dc.identifier.issn2076-3417
dc.identifier.officialurlhttps://doi.org/10.3390/app7101082
dc.identifier.relatedurlhttps://www.mdpi.com/2076-3417/7/10/1082
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19215
dc.issue.number10
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.page.initial1082
dc.publisherMDPI
dc.relation.projectID(Grant 23038.007604/2014-69 FORTE–Tempestive Forensics Project)
dc.relation.projectID(Grant 01.12.0555.00 RENASIC/PROTO–Secure Protocols Laboratory of the National Information Security and Cryptography Network)
dc.relation.projectID(Grants 0193.001366/2016 UIoT–Universal Internet of Things and 0193.001365/2016–Secure Software Defined Data Center (SSDDC))
dc.relation.projectID(Grants 005/2016 DIPLA–Planning and Management Directorate and 11/2016 SEST–Secretariat of State-owned Federal Companies)
dc.relation.projectID(Grant 066/2016)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordcybersecurity
dc.subject.keywordnetwork security
dc.subject.keywordtraffic analysis
dc.subject.keyworddeep packet inspection
dc.subject.keywordintrusion detection
dc.subject.keywordnetwork forensics
dc.subject.ucmInternet (Informática)
dc.subject.ucmRedes
dc.subject.ucmSeguridad informática
dc.subject.unesco3325 Tecnología de las Telecomunicaciones
dc.titleCybersecurity and Network Forensics: Analysis of Malicious Traffic towards a Honeynet with Deep Packet Inspection
dc.typejournal article
dc.volume.number7
dspace.entity.typePublication
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscovery0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-07-01082-v2.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format

Collections