Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Covariantizing Classical Field Theories

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorGotay, Mark J.
dc.date.accessioned2023-06-20T03:32:49Z
dc.date.available2023-06-20T03:32:49Z
dc.date.issued2011
dc.description.abstractWe show how to enlarge the covariance groups of a wide variety of classical field theories in such a way that the resulting “covariantized” theories are éssentially equivalent to the originals. In particular, our technique will render many classical field theories generally covariant, that is, the covariantized theories will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kuchar. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and Stückelberg tricks.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21374
dc.identifier.doi10.3934/jgm.2011.3.487
dc.identifier.issn1941-4889
dc.identifier.officialurlhttp://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7063
dc.identifier.relatedurlhttp://www.aimsciences.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43821
dc.issue.number4
dc.journal.titleThe Journal of Geometric Mechanics
dc.language.isoeng
dc.page.final506
dc.page.initial487
dc.publisherSpringer-Verlag
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.keywordgeneral covariance
dc.subject.keywordclassical field theory
dc.subject.keywordparametrization
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCovariantizing Classical Field Theories
dc.typejournal article
dc.volume.number3
dcterms.referencesJ. L. Anderson ”Principles of Relativity Physics,” Academic Press, New York, 1967. N. Banerjee, R. Banerjee and S. Ghosh, Quantisation of second class systems in the Batalin-Tyutin formalism, Annals of Physics, 241 (1995), 237–257. M. Castrillón López, M. J. Gotay and J. E. Marsden, Parametrization and stress-energymomentum tensors in metric field theories, J. Phys. A, 41 (2008), 344002, 10 pp. M. Castrillón López, M. J. Gotay and J. E. Marsden, Concatenating variational principles and the kinetic stress-energy-momentum tensor, in ”Variations, Geometry and Physics” (eds. 0. Krupková and D. J. Saunders), Nova Science Publishers, New York, (2009), 117–128. M. Castrillón López and J. Mu noz Masqué, The geometry of the bundle of connections, Math. Z., 236 (2001), 797–811. P. A. M. Dirac, The Hamiltonian form of field dynamics, Can. J. Math., 3 (1951), 1–23. P. A. M. Dirac ”Lectures on Quantum Mechanics,” Academic Press, New York, 1964. D. Freed, Classical Chern-Simons theory. I, Adv. Math., 113 (1995), 237–303. D. Freed, Remarks on Chern-Simons theory, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 221–254 P. L. García, Gauge algebras, curvature and symplectic structure, J. Diff. Geom., 12 (1977), 209–227. M. J. Gotay, An exterior differential systems approach to the Carian form, in ”Symplectic Geometry and Mathematical Physics” (eds. P. Donato, C. Duval, J. Elhadad and G. M. Tuynman) (Aix-en-Provence, 1990), Progr. Math., 99, Birkháuser Boston, Boston, MA, (1991), 160–188. M. J. Gotay and J. E. Marsden, Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula, in ”Mathematical Aspects of Classical Field Theory” (Seattle, WA, 1991), Contemp. Math., 132, Amer. Math. Soc., (1992), 367–392. M. J. Gotay and J. E. Marsden, Momentum maps and classical fields, work in progress. C. Isham and K. Kuchar, Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories, Annals of Physics, 164 (1985), 288–315. B. Janssens, Bundles with a lift of infinitesimal diffeomorphisms, arXiv:0911.3532, 39 pp. I. Kolár, P.W. Michor and J. Slovák, ”Natural Operations in Differential Geometry,” Springer-Verlag, Berlin, 1993 E. Kretschmann, Uber den physikalischen Sinn der Relitivitaistheorie. A. Einsteins neue und seine ursprüngliche Relitivitatstheorie, Ann. Phys., Leipzig, 53 (1917), 575–614. D. Krupka, O. Krupková and D. Saunders, The Cartan form and its generalizations in the calculus of variations, Int. J. of Geometric Methods in Modern Physics, 7 (2010), 631–654. K. Kuchar, Canonical quantization of gravity, in ”Relativity, Astrophysics and Cosmology” (ed. W. Israel), Reidel, Dordrecht, (1973), 237–288. K. Kuchar, Canonical quantization of generally covariant systems, in ”Highlights in Gravitation and Cosmology: Proceedings of the International Conference” (eds. B. R. Iyer, A. Kembhavi, J. V. Narlikar and C. V. Vishveshwara), Cambridge University Press, Cambridge, (1988), 93–120. C. Lanczos, ”The Variational Principles of Mechanics,” Fourth edition, Mathematical Expositions, No. 4, University of Toronto Press, Toronto, Ont., 1970. M. Leok, ”Foundations of Computational Geometric Mechanics,” Dissertation (Ph.D.), California Institute of Technology. Available from: http://resolver.caltech.edu/CaltechETD:etd-03022004–000251. J. E. Marsden and T. J. R. Hughes,”Mathematical Foundations of Elasticity,” Prentice-Hall, Englewood Cliffs, New Jersey, 1983. J. E. Marsden, G.W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear DDEs, Comm. Math. Phys., 199 (1998), 351–395. C. W. Misner, K. Thorne and J. A. Wheeler, ”Gravitation,” W. H. FVeeman, San Francisco, 1973. J. D. Norton, General covariance and the foundations of general relativity: Eight decades of dispute, Rep. Prog. Phys., 56 (1993), 791–858. P. J. Olver ”Applications of Lie Groups to Differential Equations,” Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986. E. J. Post,”Formal Structure of Electromagnetics: General Covariance and Electromagnetics,” Dover, New York, 2007. E. C. G. Stückelberg, Théorie de la radiation de photons de masse arbitrairement petite, Helv. Phys. Acta, 30 (1957), 209–215. C. Tejero Prieto, Variational formulation of Chern-Simons theory for arbitrary Lie groups, J. Geom. Phys., 50 (2004), 138–161. R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. (2), 101 (1956), 1597–1607.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
covariantizing-castrillón.pdf
Size:
284.48 KB
Format:
Adobe Portable Document Format

Collections