Some results and open questions on spaceability in function spaces

dc.contributor.authorEnflo, Per H.
dc.contributor.authorGurariy, Vladimir
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-19T13:22:47Z
dc.date.available2023-06-19T13:22:47Z
dc.date.issued2014
dc.description.abstractA subset M of a topological vector space X is called lineable (respectively, spaceable) in X if there exists an infinite dimensional linear space (respectively, an infinite dimensional closed linear space) Y subset of M boolean OR {0}. In this article we prove that, for every infinite dimensional closed subspace X of C[0, 1], the set of functions in X having infinitely many zeros in [0, 1] is spaceable in X. We discuss problems related to these concepts for certain subsets of some important classes of Banach spaces (such as C[0, 1] or Muntz spaces). We also propose several open questions in the field and study the properties of a new concept that we call the oscillating spectrum of subspaces of C[0, 1], as well as oscillating and annulling properties of subspaces of C[0, 1].
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24145
dc.identifier.doi10.1090/S0002-9947-2013-05747-9
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/2014-366-02/S0002-9947-2013-05747-9/S0002-9947-2013-05747-9.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33431
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final625
dc.page.initial611
dc.publisherAmerican Mathematical Society
dc.relation.projectIDMTM2009-07848
dc.rights.accessRightsrestricted access
dc.subject.cdu517
dc.subject.keywordLineability
dc.subject.keywordspaceability
dc.subject.keywordsubspaces of continuous functions
dc.subject.keywordzeros of functions
dc.subject.keywordMuntz spaces
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleSome results and open questions on spaceability in function spaces
dc.typejournal article
dc.volume.number336
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seoane202.pdf
Size:
252.84 KB
Format:
Adobe Portable Document Format

Collections